您现在的位置是: 首页 > 招生信息 招生信息

双钩函数高考-高中数学双勾函数

tamoadmin 2024-09-06 人已围观

简介1.高考范围内与双钩函数有关的性质,图像等。总之越详细越好。2.双钩函数 单调性 在高考中可以直接应用其单调性结论吗3.双钩函数的运用,求最值怎么求4.哪里有不常见的函数图像?抽象函数.....高考范围内与双钩函数有关的性质,图像等。总之越详细越好。对勾函数是一种类似于反比例函数的一般函数,又被称为“双勾函数”、“勾函数”、"对号函数"、“双飞燕函数”等。也被形象称为“耐克函数”或“耐克曲线”。所

1.高考范围内与双钩函数有关的性质,图像等。总之越详细越好。

2.双钩函数 单调性 在高考中可以直接应用其单调性结论吗

3.双钩函数的运用,求最值怎么求

4.哪里有不常见的函数图像?抽象函数.....

高考范围内与双钩函数有关的性质,图像等。总之越详细越好。

双钩函数高考-高中数学双勾函数

对勾函数是一种类似于反比例函数的一般函数,又被称为“双勾函数”、“勾函数”、"对号函数"、“双飞燕函数”等。也被形象称为“耐克函数”或“耐克曲线”。

所谓的对勾函数(双曲线函数),是形如f(x)=ax+b/x(a>0)的函数。由图像得名。

图像

对勾函数的图像性质:

对勾函数是数学中一种常见而又特殊的函数,见图示,在作图时最好画出渐近线y=ax。

奇偶性单调性

当x>0时,f(x)=ax+b/x有最小值(这里为了研究方便,规定a>0,b>0),也就是当x=sqrt(b/a)时(sqrt表示求二次方根)

奇函数。

令k=,那么:

增区间:{x|x≤-k}和{x|x≥k};

减区间:{x|-k≤x<0}和{x|0<x≤k}

变化趋势:在y轴左边,增减,在y轴右边,减增,是两个勾。

渐近线

对勾函数的图像是分别以Y轴和y=ax为渐近线的两支双曲线。

双钩函数 单调性 在高考中可以直接应用其单调性结论吗

这不一定,没有一个标准,高考改卷,的尺度永远在阅卷组长的手里,什么叫政策谁的嘴大谁就是政策;

不过为了确认获满分,如果证明了,谁也扣不了你的分,不证明的话可以说清楚钩底的横坐标是多少,不过对钩函数的证明可以用导数证明是非常简单的,或者把导数求出来,求一下零点,再简单说明一下就完美了。

双钩函数的运用,求最值怎么求

所谓的对勾函数(双曲线函数),是形如f(x)=ax+b/x的函数。由图像得名。 当x>0时,f(x)=ax+b/x有最小值(这里为了研究方便,规定a>0,b>0),也就是当x=sqrt(b/a)的时候(sqrt表示求二次方根)

高考例题

2006年高考上海数学试卷(理工农医类)已知函数 y=x+a/x 有如下性质:如果常数a>0,那么该函数在 (0,√a] 上是减函数,在 ,[√a,+∞ )上是增函数. (1)如果函数 y=x+(2^b)/x (x>0)的值域为 [6,+∞),求b 的值; (2)研究函数 y=x^2+c/x^2 (常数c >0)在定义域内的单调性,并说明理由; (3)对函数y =x+a/x 和y =x^2+a/x^2(常数a >0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x) =(x^2+1/x)^n+(1/x^2+x)^n(x 是正整数)在区间[? ,2]上的最大值和最小值(可利用你的研究结论) 当x>0时,f(x)=ax+b/x有最小值;当x<0时,f(x)=ax+b/x有最大值 f(x)=x+1/x 首先你要知道他的定义域是x不等于0 当x>0, 由均值不等式有: f(x)=x+1/x>=2根号(x*1/x)=2 当x=1/x取等 x=1,有最小值是:2,没有最大值。 当x<0,-x>0 f(x)=-(-x-1/x) <=-2 当-x=-1/x取等。 x=-1,有最大值,没有最小值。 值域是:(负无穷,-2)并(2,正无穷) -------------- 证明函数f(x)=ax+b/x,(a>0,b>0)在x>0上的单调性 设x1>x2且x1,x2∈(0,+∝) 则f(x1)-f(x2)=(ax1+b/x1) -(ax2+b/x2) =a(x1-x2)-b(x1-x2)/x1x2 =(x1-x2)(ax1x2-b)/x1x2 因为x1>x2,则x1-x2>0 当x∈(0,√(b/a))时,x1x2<b/a 则ax1x2-b<b-b=0 所以f(x1)-f(x2)<0,即x∈(0,√(b/a))时,f(x)=ax+b/x单调递减; 当x∈(√(b/a),+∞)时,x1x2>b/a 则ax1x2-b>b-b=0 所以f(x1)-f(x2)>0,即x∈(√(b/a),+∞)时,f(x)=ax+b/x单调递增。

哪里有不常见的函数图像?抽象函数.....

抽象函数 一般形式为 y=f(x)且无法用数字和字母表示出来的函数,一般出现在题目中,或许有定义域、值域等。

山武补充:

1抽象函数常常与周期函数结合,如:

f(x)=-f(x+2)

f(x)=f(x+4)

2解抽象函数题,通常要用赋值法,而且高考数学中,常常要先求F(0) F(1)

抽象函数的经典题目!!!

我们把没有给出具体解析式的函数称为抽象函数。由于这类问题可以全面考查学生对函数概念和性质的理解,同时抽象函数问题又将函数的定义域,值域,单调性,奇偶性,周期性和图象集于一身,所以在高考中不断出现;如2002年上海高考卷12题,2004年江苏高考卷22题,2004年浙江高考卷12题等。学生在解决这类问题时,往往会感到无从下手,正确率低,本文就这类问题的解法谈一点粗浅的看法。

一.特殊值法:在处理选择题时有意想不到的效果。

例1 定义在R上的函数f(x)满足f (x + y) = f (x) + f ( y )(x,y∈R),当x<0时,, f (x)>0,则函数f (x)在[a,b]上 ( )

A 有最小值f (a) B有最大值f (b) C有最小值f (b) D有最大值f ( )

分析:许多抽象函数是由特殊函数抽象背景而得到的,如正比例函数f (x)= kx(k≠0), , , ,可抽象为f (x + y) = f (x) +f (y),与此类似的还有

特殊函数 抽象函数

f (x)= x f (xy) =f (x) f (y)

f (x)=

f (x+y)= f (x) f (y)

f (x)=

f (xy) = f (x)+f (y)

f (x)= tanx f(x+y)=

此题作为选择题可用特殊值函数f (x)= kx(k≠0)

∵当x <0时f (x) > 0即kx > 0。.∴k < 0,可得f (x)在[a,b]上单调递减,从而在[a,b]上有最小值f(b)。

二.赋值法.根据所要证明的或求解的问题使自变量取某些特殊值,从而来解决问题。

例2 除了用刚才的方法外,也可用赋值法

解:令y = -x,则由f (x + y) = f (x) + f (y) (x,y∈R)得f (0) = f (x) +f (-x)…..①,

再令x = y = 0得f(0)= f(0)+ f(0)得f (0)=0,代入①式得f (-x)= -f(x)。

得 f (x)是一个奇函数,再令 ,且 。

∵x <0,f (x) >0,而 ∴ ,则得 ,

即f (x)在R上是一个减函数,可得f (x)在[a,b]上有最小值f(b)。

例3 已知函数y = f (x)(x∈R,x≠0)对任意的非零实数 , ,恒有f( )=f( )+f( ),

试判断f(x)的奇偶性。

解:令 = -1, =x,得f (-x)= f (-1)+ f (x) ……①为了求f (-1)的值,令 =1, =-1,则f(-1)=f(1)+f(-1),即f(1)=0,再令 = =-1得f(1)=f(-1)+f(-1)=2f(-1) ∴f(-1)=0代入①式得

f(-x)=f(x),可得f(x)是一个偶函数。

三.利用函数的图象性质来解题:

抽象函数虽然没有给出具体的解析式,但可利用它的性质图象直接来解题。

抽象函数解题时常要用到以下结论:

定理1:如果函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图象关于x= 对称。

定理2:如果函数y=f(x)满足f(a+x)=f(b+x),则函数y=f(x)是一个周期函数,周期为a-b。

例4 f(x)是定义在R上的偶函数,且f(x)=f(2-x),证明f(x)是周期函数。

分析:由 f(x)=f(2-x),得 f(x)的图象关于x=1对称,又f(x)是定义在R上的偶函数,图象关于y轴对称,根据上述条件,可先画出符合条件的一个图,那么就可以化无形为有形,化抽象为具体。从图上直观地判断,然后再作证明。

由图可直观得T=2,要证其为周期函数,只需证f (x) = f (2 + x)。

证明:f (x) = f (-x) = f [2-(-x)] = f (2 + x),∴ T=2。

∴f (x)是一个周期函数。

例5 已知定义在[-2,2]上的偶函数,f (x)在区间[0,2]上单调递减,若f (1-m)<f (m),求实数m的取值范围

分析:根据函数的定义域,-m,m∈[-2,2],但是1- m和m分别在[-2,0]和[0,2]的哪个区间内呢?如果就此讨论,将十分复杂,如果注意到偶函数,则f (x)有性质f(-x)= f (x)=f ( |x| ),就可避免一场大规模讨论。

解:∵f (x)是偶函数, f (1-m)<f(m) 可得 ,∴f(x)在[0,2]上是单调递减的,于是 ,即 化简得-1≤m< 。

文章标签: # 函数 # 抽象 # 单调