您现在的位置是: 首页 > 专业报考 专业报考
带电圆环的电场强度公式-带电圆环高考
tamoadmin 2024-11-01 人已围观
简介1.我想要些学习资料,高中的!!2.高中物理带电粒子在复合场中的运动有什么解题技巧?3.2013年江苏省高考物理真题4.带电粒子在电场中的运动我想要些学习资料,高中的!!高考物理知识点Ⅰ、复习要点 一、高考物理知识点体系 现行高中物理教材主要分:力、热、电、光、原子五个部分.综合复习中,既可以根据各部分的内容特点,分别整理出各自的体系或主要线索,也可以不受传统的五部分限制,重新归纳、整理。例如
1.我想要些学习资料,高中的!!
2.高中物理带电粒子在复合场中的运动有什么解题技巧?
3.2013年江苏省高考物理真题
4.带电粒子在电场中的运动
我想要些学习资料,高中的!!
高考物理知识点
Ⅰ、复习要点
一、高考物理知识点体系
现行高中物理教材主要分:力、热、电、光、原子五个部分.综合复习中,既可以根据各部分的内容特点,分别整理出各自的体系或主要线索,也可以不受传统的五部分限制,重新归纳、整理。例如,高考物理知识点总结可概括为四大单元(物理实验与物理学史单元除外)。
(一)力和运动
物体的运动变化(包括带电粒子在电场、磁场中的运动)与受力作用有关。其中力的种类计有:重力(包括万有引力)、弹力、摩擦力、浮力、电场力、磁场力(分安培力和洛舍兹力)以及分子力(包括表面张力),核力等。每种力有不同的产生原因及其特征。物体的运动形式又可分为:平衡(包括静止、匀速直线运动、匀速转动)、匀变速运动(包括匀变速直线运动、平抛、斜抛)、匀速圆周运动、振动、波动等。每一种运动形式有不同的物理条件及基本规律(或特征)。力和运动的关系以五条重要规律为纽带联系起来。
(二)功和能
1.功重力功、弹力功、摩擦力功、浮力功、电场力功、磁场力功、分子力功、核力功。
2.能注意不同形式的能及能的转换与守恒。
3.功能关系做功的过程就是能从一种形式转化为另一种形式的过程。功是能的转化的量度。
(三)物质结构
(四)应用技术的基础知识现行高中物理有关应用技术的基础知识有:声现象(乐音、噪声、共鸣等多、静电技术(静电平衡、静电屏蔽、电容储电等)、交流电应用(交流电产生、特征、规律、简单交流电路、三相交流电及其连接、变压器,远距离送电等)、无线电技术初步(电磁振荡产生、调制、发送、电谐振、检波、放大、整流等)、光路控制与成像(光的反射与折射定律、基本光学元件特性及常用光学仪器)、光谱与光谱分析、放射性及同位素、核反应堆等。经过这样的归纳、整理,全部高中物理知识可浓缩在几张小卡片纸上,便于领会和应用。
Ⅱ、归纳思维方式
分析问题最基本的思维方式有两种:综合法和分析法.
综合法是从已知量着手,根据题中给定的物理状态或物理过程。“顺流而下”,直到把待求量跟已知量的关系全部找出来为止。
分析法则“逆流上朔”。从题中所要求解的未知量开始。首先找出直接回答题目所求的定律或公式。在这些关系式电。除了待求的未知量外,还会包含着某些过渡性的未知量。然后再根据这些过渡性来知量与题中已知条件之间的关系,引用新的关系式,逐步上朔,直到把所有的未知量都能用已知量表示出来为止。有些问题(如静力平衡问题等),它的物理过程并不能很明确地分成几个互相衔接的阶段或者各个过程中的未知量互相交织,互有牵连,此时常可以不分先后。只根据问题所描述的物理状态(或物理过程)的相互联系。列出用某个状态(或过程)有关的独立方程式,联立求解。原则上,任何一个题目都可以从这两种思维方式着手求解。值得注意的是,解决具体问题时,不必拘泥于刻板的程式,而是应该侧重于对问用中所描述的状态(或过程)的分析推理,着力找出解题的关键所在,并以此为突破口下手.同时应联合运用其他的思维技巧,如等效变换,对称性、反证法、假设法、类比、逻辑推理等。
Ⅲ、综合数学技巧
运用数学技巧,包含着极其丰富的内容。总体上要求能运用数学工具和语言,表述物理概念和规律;对物理问题进行推理、论证和变换;处理实验数据;导出球验证物理规律;进行准确的演算等。就解决某帧体的物理问回而言,要求能灵活地运用多种数学工具(如方程、此例、函数、图象、不等式、指数和对数、数列、极限、极值、数学归纳、三角、平面解析几何等)。综合复习中可全面概述其在物理中的典型应用,并侧重于比例、函数及其图象(包括识图、用图、作图)、以及运用数学递推方法从特解导出通解等。必须注意,运用数学仅是研究物理问题的一种有力的工具,侧重点还是应放在对问题中物理内容的分析上.对大多数能从物理本质上着手解决的问题,一般不必要求作严格的数学论证。
Ⅳ、检查知识缺陷
整理体系、抓住主线索后,还需做好检查知识缺陷的工作。应注意自觉看书,尤其不能疏忽那些应用性强、包含(或隐含)着物理内容的“知识角落”。如对某些实验的装置、原理的理解;某些自然现象的解释;物理原理在生产技术上的应用以及与高中物理有关的科技新动态和重要的物理学史实等.不少学生由于缺乏良好的学习习惯戏迷恋于复习资料中,往往会在这些方面失分。如以往考试中解释太阳光谱中暗线的形成);分光镜的结构;低压汞蒸汽光谱;三相变压器及超导现象;直线加速器;日光灯接法;电磁感应现象的发现者等。在综合复习中应予以足够的重视。
热学辅导
热学包括分子动理论、热和功、气体的性质几部分。
一、重要概念和规律
1.分子动理论
物质是由大量分子组成的;分子永不停息的做无规则运动;分子间存在相互作用的引力和斥力。说明:(1)阿伏伽德罗常量NA=6.02X1023摩-1。它是联系宏观量和微观量的桥梁,有很重要的意义;(2)布朗运动是指悬浮在液体(或气体)里的固体微粒的无规则运动,不是分子本身的运动。它是由于液体(或气体)分子无规则运动对固体微粒碰撞的不均匀所造成的。因此它间接反映了液体(或气体)分子的无序运动。
2.温度
温度是物体分子热运动的平均动能的标志。它是大量分子热运动的平均效果的反映,具有统计的意义,对个别分子而言,温度是没有意义的。任何物体,当它们的温度相同时,物体内分子的平均动能都相同。由于不同物体的分子质量不同,因而温度相同时不同物体分子的平均速度并不一定相同。
3.内能
定义物体里所有分子的动能和势能的总和。决定因素:物质数量(m).温度(T)、体积(V)。改变方式做功——通过宏观机械运动实现机械能与内能的转换;热传递——通过微观的分子运动实现物体与物体间或同一物体各部分间内能的转移。这两种方式对改变内能是等效的。定量关系△E=W+Q(热力学第一定律)。
4.能量守恒定律
能量既不会凭空产生,也不会凭空消旯它产能从一种形式转化为别的形式,或者从一个物体转移到别的物体。必须注意:不消耗任何能量,不断对外做功的机器(永动机)是不可能的。利用热机,要把从燃料的化学能转化成的内能,全部转化为机械能也是不可能的。
5.理想气体状态参量
理想气体始终遵循三个实验定律(玻意耳定律、查理定律、盖?吕萨克定律)的气体。描述一定质量理想气体在平衡态的状态参量为:温度气体分子平均动能的标志。体积气体分子所占据的空间。许多情况下等于容器的容积。压强大量气体分子无规则运动碰撞器壁所产生的。其大小等于单位时间内、器壁单位面积上所受气体分子碰撞的总冲量。内能气体分子无规则运动的动能.理想气体的内能仅与温度有关。
6.一定质量理想气体的实验定律
玻意耳定律:PV=恒量;查理定律:P/T=恒量;盖?吕萨克定律:V/T=恒量。
7.一定质量理想气体状态方程
PV/T=恒量
说明(1)一定质量理想气体的某个状态,对应于P一V(或P-T、V-T)图上的一个点,从一个状态变化到另一个状态,相当于从图上一个点过渡到另一个点,可以有许多种不同的方法。如从状态A变化到B,可以经过的过程许多不同的过程。为推导状态方程,可结合图象选用任意两个等值过程较为方便。(2)当气体质量发生变化或互有迁移(混合)时,可采用把变质量问题转化为定质量问题,利用密度公式、气态方程分态式等方法求解。
二、重要研究方法
1、微观统计平均
热学的研究对象是由大量分子组成的.其宏观特性都是大量分子集体行为的反映。不可能同时也无必要像力学中那样根据每个物体(每个分子)的受力情况,写出运动方程。热学中的状态参量和各种现象具有统计平均的意义。因此,当大量分子处于无序运动状态或作无序排列时,所表现出来的宏观特性——如气体分子对器壁的压强、非晶体的物理属性等都显示出均匀性。当大量分子作有序排列时,必显示出不均匀性,如晶体的各自异性等。研究热学现象时,必须充分领会这种统计平均观点。
2.物理图象
气体性质部分对图象的应用既是一特点,也是一个重要的方法。利用图象常可使物理过程得到直观、形象的反映,往往使对问题的求解更为简便。对物理图象的要求,不仅是识图、用图,而且还应变图一即作图象变换。如图P-V图变换成p-T图或V-T图等。
3.能的转化和守恒
各种不同形式的能可以互相转化,在转化过程中总量保持不变。这是自然界中的一条重要规律。也是指导我们分析研究各种物理现象时的一种极为重要的思想方法。在本讲中各部分都有广泛的渗透,应牢固把握。
三、基本解题思路
热学部分的习题主要集中在热功转换和气体性质两部分,基本解题思路可概括为四句话:
1.选取研究对象.它可以是由两个或几个物体组成的系统或全部气体和某一部分气体。(状态变化时质量必须一定。)
2.确定状态参量.对功热转换问题,即找出相互作用前后的状态量,对气体即找出状态变化前后的p、V、T数值或表达式。
3、认识变化过程.除题设条件已指明外,常需通过究对象跟周围环境的相互关系中确定。
4.列出相关方程.
光学辅导
光学包括两大部分内容:几何光学和物理光学.几何光学(又称光线光学)是以光的直线传播性质为基础,研究光在煤质中的传播规律及其应用的学科;物理光学是研究光的本性、光和物质的相互作用规律的学科.
一、重要概念和规律
(一)几何光学基本概念和规律
1、基本规律
光源发光的物体.分两大类:点光源和扩展光源.点光源是一种理想模型,扩展光源可看成无数点光源的集合.光线——表示光传播方向的几何线.光束通过一定面积的一束光线.它是温过一定截面光线的集合.光速——光传播的速度。光在真空中速度最大。恒为C=3×108m/s。丹麦天文学家罗默第一次利用天体间的大距离测出了光速。法国人裴索第一次在地面上用旋转齿轮法测出了光这。实像——光源发出的光线经光学器件后,由实际光线形成的.虚像——光源发出的光线经光学器件后,由发实际光线的延长线形成的。本影——光直线传播时,物体后完全照射不到光的暗区.半影——光直线传播时,物体后有部分光可以照射到的半明半暗区域.
2.基本规律
(1)光的直线传播规律先在同一种均匀介质中沿直线传播。小孔成像、影的形成、日食、月食等都是光沿直线传播的例证。
(2)光的独立传播规律光在传播时虽屡屡相交,但互不扰乱,保持各自的规律继续传播。
(3)光的反射定律反射线、人射线、法线共面;反射线与人射线分布于法线两侧;反射角等于入射角。
(4)光的折射定律折射线、人射线、法织共面,折射线和入射线分居法线两侧;对确定的两种介质,入射
角(i)的正弦和折射角(r)的正弦之比是一个常数.介质的折射串n=sini/sinr=c/v。全反射条件①光从光密介质射向光疏介质;②入射角大于临界角A,sinA=1/n。
(5)光路可逆原理光线逆着反射线或折射线方向入射,将沿着原来的入射线方向反射或折射.
3.常用光学器件及其光学特性
(1)平面镜点光源发出的同心发散光束,经平面镜反射后,得到的也是同心发散光束.能在镜后形成等大的、正立的虚出,像与物对镜面对称。
(2)球面镜凹面镜有会聚光的作用,凸面镜有发散光的作用.
(3)棱镜光密煤质的棱镜放在光疏煤质的环境中,入射到棱镜侧面的光经棱镜后向底面偏折。隔着棱镜看到物体的像向项角偏移。棱镜的色散作用复色光通过三棱镜被分解成单色光的现象。
(4)透镜在光疏介质的环境中放置有光密介质的透镜时,凸透镜对光线有会聚作用,凹透镜对光线有发散作用.透镜成像作图利用三条特殊光线。成像规律1/u+1/v=1/f。线放大率m=像长/物长=|v|/u。说明①成像公式的符号法则——凸透镜焦距f取正,凹透镜焦距f取负;实像像距v取正,虚像像距v取负。②线放大率与焦距和物距有关.
(5)平行透明板光线经平行透明板时发生平行移动(侧移).侧移的大小与入射角、透明板厚度、折射率有关。
4.简单光学仪器的成像原理和眼睛
(1)放大镜是凸透镜成像在。u<f时的应用。通过放大饼在物方同地看到正立虚像。
(2)照相机是凸透镜成像在u>2f时的应用.得到的是倒立缩小施实像。
(3)幻灯机是凸透镜成像在f<u<2f时的应用。得到的是倒立放大的实像.
(4)显微镜由短焦距的凸透镜作物镜,长焦距的透镜作目镜所组成。物体位于物镜焦点外很靠近焦点处,经物镜成实像于目镜焦点内很靠近焦点处。再经物镜在同侧形成一放大虚像(通常位于明视距离处)。
(5)望远镜由长焦距的凸透镜作物镜,辕焦距的〕透镜作目镜所组成。极远处至物镜的光可看成平行光,经物镜成中间像(倒立、缩小、实像)于物镜焦点外很靠近焦点处,恰位于目镜焦点内,再经目镜成虚像于极远处(或明视距离处)。
(6)眼睛等效于一变焦距照相机,正常人明视距约25厘米。明视距离小子25厘米的近视眼患者需配戴凹透镜做镜片的眼镜;明视距离大于25厘米的远视25者需配戴凸透镜做镜片的眼镜。
(二)物理光学——人类对光本性的认识发展过程
(1)微粒说(牛顿)基本观点认为光像一群弹性小球的微粒。实验基础光的直线传播、光的反射现象。困难问题无法解释两种媒质界面同时发生的反射、折射现象以及光的独立传播规律等。
(2)波动说(惠更斯)基本观点认为光是某种振动激起的波(机械波)。实验基础光的干涉和衍射现象。
①个的干涉现象——杨氏双缝干涉实验
条件两束光频率相同、相差恒定。装置(略)。现象出现中央明条,两边等距分布的明暗相间条纹。解释屏上某处到双孔(双缝)的路程差是波长的整数倍(半个波长的偶数倍)时,两波同相叠加,振动加强,产生明条;两波反相叠加,振动相消,产生暗条。应用检查平面、测量厚度、增强光学镜头透射光强度(增透膜).
②光的衍射现象——单缝衍射(或圆孔衍射)
条件缝宽(或孔径)可与波长相比拟。装置(略)。现象出现中央最亮最宽的明条,两边不等距发表的明暗条纹(或明暗乡间的圆环)。困难问题难以解释光的直进、寻找不到传播介质。
(3)电磁说(麦克斯韦)基本观点认为光是一种电磁波。实验基础赫兹实验(证明电磁波具有跟光同样的性质和波速)。各种电磁波的产生机理无线电波自由电子的运动;红外线、可见光、紫外线原子外层电子受激发;x射线原子内层电子受激发;γ射线原子核受激发。可见光的光谱发射光谱——连续光谱、明线光谱;吸收光谱(特征光谱。困难问题无法解释光电效应现象。
(4)光子说(爱因斯坦)基本观点认为光由一份一份不连续的光子组成每份光子的能量E=hν。实验基础光电效应现象。装置(略)。现象①入射光照到光电子发射几乎是瞬时的;②入射光频率必须大于光阴极金属的极限频率ν。;
③当ν>v。时,光电流强度与入射光强度成正比;④光电子的最大初动能与入射光强无关,只随着人射光灯中的增大而增大。解释①光子能量可以被电子全部吸收.不需能量积累过程;②表面电子克服金属原子核引力逸出至少需做功(逸出功)hν。;③入射光强。单位时间内入射光子多,产生光电子多;④入射光子能量只与其频率有关,入射至金属表,除用于逸出功外。其余转化为光电子初动能。困难问题无法解释光的波动性。
(5)光的波粒二象性基本观点认为光是一种具有电磁本性的物质,既有波动性。又有粒子性。大量光子的运动规律显示波动性,个别光子的行为显示粒子性。实验基础微弱光线的干涉,X射线衍射.
二、重要研究方法
1.作图锋几何光学离不开光路图。利用作图法可以直观地反映光线的传播,方便地确定像的位置、大小、倒正、虚实以及成像区域或观察范围等.把它与公式法结合起来,可以互相补充、互相验证。
2.光路追踪法用作图法研究光的传播和成像问题时,抓住物点上发出的某条光线为研究对象。不断追踪下去的方法.尤其适合于研究组合光具成多重保的情况。
3.光路可逆法在几何光学中,一所有的光路都是可逆的,利用光路可逆原理在作图和计算上往在都会带来方便。
实验辅导
物理学是一门以实验为基础的科学。近年来对学生物理知识的各种全面测试中(如高考等)也非常重视对学生实验能力的考查。因此,物理实验的复习是整个总复习中不可缺少的一个重要组成部分.
一、实验的基本类型和要求
中学物理学生实验大体可以分为四范其要求如下:
1.基本仪器的使用除了初中已接触过的常用仪器(如天平秤、弹簧秤、压强计、气压计、温度计、安培计、伏特计等)外.高中又学习了打点计时器、螺旋测微器、游标卡尺、万用电表等,要求了解仪器的基本结构,熟悉各主要部件的名称,懂得工作(测量)原理,掌握合理的操作方法,会正确读数,明确使用注意事项等.
2.基本物理量的测量初中物理中巴学过长度、时间、质量、力、温度、电流强度、电压等物理量的测量,高中物理进一步学习了对微小长度和极短时间、加速度(包括g)、速度、电阻和电阻率、电动势、折射率、焦距等物理量的测量。要求明确被测物理量的含义,懂得具体的测量原理。掌握正确的实验方法(包括了解实验仪器、器材的规格性能、会安装和调试实验装置、能选择合理的实验步骤,正确进行数据测量以及能分析和排除实验中出现的常见故障等),妥善处理实验数据并得出结果。
3.验证物理规律计有验证共点力合成的平行四边形定则、有固定转动轴物体的平衡条件、牛顿第二定律、机械能守恒定律、玻意耳定律等。其要求与物理量的测量相同,着重注意分析实验误差,并能有效地采取相应措施尽量减少实验误差,提高准确度。
4.观察、研究物理现象,组装仪器如研究平抛运动、弹性碰撞、描绘等势线、研究电磁感应现象、变压器的作用、观察光的衍射现象。把电流计改装为伏特计等.其中,对观察型实验,只要求会正确使用仪器,显示出(或观察到)物理现象,并通过直觉的观察定性了解影响该现象的有关因素。对研究型实验(包括组装仪器),要求不仅能使用仪器,掌握正确的实验研究方法,把有关现象的物理内客反映出来;或把有关参数测量出来,还能够通过具体的测量作进一步的定量研一究或实验设计。
二、实验的设计思想
在中学物理实验中涉及的主要设计思想为:
1.垒积放大法把某些物理量(有时往在是难以直接测量的测量的微小量)累积后测量,或把它们放大后显示出来的一种方法。如通过若干次全振动的时间测出单摆的振动周期;把员杨螺杆的微小进退.通过周长较大的可动到度盘显示出来(螺旋测微器)等。
2.平衡法根据物理系统内普遍存在的对立的、矛盾的双方使系统偏离平衡的物理因素,列出对应的平衡方程式,从而找出影响平衡的一种方法如用天平测质量、验证有固定转动因乎衔条件、验证玻意耳定律等。
3.控制法在多因素的物理现象中,可以先控制某些量不变,依次研究某一个因素对现象产生影响的一种方法。如牛顿第二定律实验。可以先保持质量一定,研究加速度与力的关系等。
4.转换法用某些容易直接测量,(或显示)的量(或现象)代替不容易直接测(或显示)的量(或现象)。或者根据研究对象在一定条件下可以有相同的效果作间接的观察、测量。如把流逝的时间转换成振针周期性的振动;把对电流、电压、电阻的测量转换成对指针偏角的测量;用从等高处抛出的两球的水平位移代替它们的速度等。
5.留迹法把瞬息即逝的(位置、轨迹、图象等)记录下来的一种方法。如通过纸带上打出的小点记录小车的位置Z用描述法画出平抛物体的运动轨迹;用示波器显示变化的波形等。
三、实验验数据处理
数据处理是对原始实验记录的科学加工。通过数据处理,往往可以从一堆表面上难以觉察的、似乎毫无联系的数据中找出内在的规律,在中学物现中只要求掌握数据处理的最简单的方法.
1.列表法把被测物理量分类列表表示出来。通常需说明记录表的要求(或称为标题)、主要内容等。表中对各物理量的排列月惯上先原始记录数据,后计算果。列表法可大体反映某些因素对结果的影响效果或变化趋势,常用作其他数据处理方法的一种辅助手段。
2.算术平均值法把待测物理量的若干次测且值相加后除以测量次数。必须注意,求取算术平均值时,应按原测量仪器的准确度决定保留有效数字的位数。通常可先计算比直接测量值多一位,然后再四会五入。
3.图象法把实验测得的量按自变量和应变量的函数关系在坐标平面上用图象直观地显示出来.根据实验数据在坐标纸上画出图象时。最基本的要求是:
(1)两坐标轴要选取恰当的分度
(2)要有足够多的描点数目
(3)画出的图象应尽是穿过较多的描点在图象呈曲线的情况下,可先根据大多数描点的分布位置(个别特殊位置的奇异点可舍去),画出穿过尽可能多的点的草图,然后连成光滑的曲线,避免画成拆线形状。
四、实验误差分析
测量值与待测量真实值之差,称为测量误差。主要来源于仪器(如性能和结构的不完善)、环境(如温度、湿度、外磁场的影响等)、实验方法(如实验方法粗糙、实验理论不完善等)、人为因素(如观测者个人的生理、心理习惯、不同观察者的反应快慢不一等)四方面。在中学物理中只要求定性分析实验误差的主要原因,了解绝对误差和相对误差的概念。
高中物理带电粒子在复合场中的运动有什么解题技巧?
在高考压轴题中,经常出现把这二者的运动结合起来,让带电粒子分别通过电场和磁场,把两种或者两种以上的运动组合起来,全面考察我们队各种带电粒子运动规律的掌握情况。求解这一类问题,一方面我们要按照顺序对题目上给出的运动过程进行分段分析,将复杂的问题分解为一个一个的简单熟悉的物理模型,另一方面我们也要全面准确分析相关过程中功能关系的变化,弄清楚各个状态之间的能量变化,便于我们按照动能定理或者能量守恒定律写方程。
在对带电粒子在每个场中的运动状况分析时,要特别注意粒子在场与场交接处的运动情况,因为这一般是一个临界状态,一定要分析清楚此刻粒子的速度大小和方向以及相应的位置关系,这通常对于进入另一个场中的运动有决定性的影响!
还有一些是两场共存或者是三场共存的问题,这些运动会更加复杂,但是他本质上是一个力学问题,只要我们掌握的相应的规律,利用力学问题的研究思路和基本规律,都是可以顺利克服的!
对于带电粒子在电场、磁场、复合场中运动时,重力是否考虑分三种情况:(1)对于微观粒子,如电子、质子、离子等,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等一般应当考虑其重力.
(2)在题目中有明确说明是否要考虑重力的,这种情况按题目要求处理比较正规,也比较简单.
(3)不能直接判断是否要考虑重力的,在进行受力分析与运动分析时,要结合运动状态确定是否要考虑重力.
类型一、分离的电场与磁场
带电粒子在电场中的加速运动可以利用牛顿第二定律结合匀变速直线运动规律,或者从电场力做功角度出发求出粒子进入下一个场的速度。对于带电粒子在电场中的偏转,要利用类平抛运动的规律,根据运动的合成与分解,结合牛顿定律和能量关系,求出粒子进入下一个场的速度大小,再结合速度合成与分解之间的关系,速度偏转角正切值与位移偏转角正切值的关系求出速度方向。
带电粒子垂直进入匀强磁场,其运动情况一般是匀速圆周运动的一部分,解决粒子在磁场中的运动情况,关键是确定粒子飞入点和飞出点的位置以及速度方向,再利用几何关系确定圆心和半径。值得注意的是,若带电粒子从磁场中某个位置飞出后,再经电场的作用在同一个位置以相同的速度大小再次飞入磁场中时,由于飞出和飞入速度方向相反,洛伦兹力的方向相反,粒子两次在磁场中的运动轨迹并不重合!
需要强调的是,带电粒子从一个场进入另外一个场,两场之间的连接点是这类问题的中枢,其速度是粒子在前一个场的某速度,是后一个场的初速度,再解决问题时要充分利用这个位置信息。
类型二、多场并存的无约束运动
在解决复合场问题时应首先弄清楚是哪些场共存,注意电场和磁场的方向以及强弱,以便确定带电粒子在场中的受力情况。带电粒子在复合场中运动时如果没有受到绳子,杆,环等的约束,则带电粒子在空间中可以自由移动,只受场力的`作用。根据空间存在的场的不同,一般带电粒子的运动规律不同,通常可以分为以下几类:
1、静止或匀速直线运动
如果是重力场与电场共存,说明电场力等于重力。常用方程为
;
如果是重力场与磁场共存,说明重力与洛伦兹力平衡。常用方程为
;
如果是匀强磁场和电场共存。说明电场力和洛伦兹力平衡。常用方程为
;
如果是重力场,电场,磁场三场共存。则粒子的运动情况分为两类:(1)静止,带电粒子所受的重力和电场力平衡,没有运动不受洛伦兹力作用。(2)匀速直线运动,可能是重力与电场力平衡,但运动方向与磁场方向在同一个直线上,故不受洛伦兹力作用;也可能是受到三个场力,这个时候运动方向与磁场方向肯定不在一条直线上,这说明三力平衡,一般结合正交分解法写出对应的方程即可。
2、匀变速直线运动或者匀变速曲线运动
一般存在于电场与重力场共存比较多,由于合力恒定,可以采取等效重力场的方法。
3、匀速圆周运动
当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.相当于带电粒子只受洛伦兹力作用的情况。
4、较复杂的曲线运动
当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.比如螺旋式运动,这种情况一般不在高考的考察范围之内。
当然,无论粒子做什么运动我们都要有一条清晰的思路帮助我们处理问题:
(1)弄清复合场的组成.如磁场、电场的复合,磁场、重力场的复合,磁场、电场、重力场三者的复合等.
(2)正确受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析;
(3)根据受力情况确定带电粒子的运动状态,注意运动情况和受力情况的结合;
A、静止或做匀速直线运动,用平衡的观点去处理,根据受力平衡列方程求解;
B、做匀变速直线运动,用牛顿运动定律、动能定理、动量定理、功能关系等去处理;
C、做匀变速曲线运动,一般用运动的合成与分解去处理,同时辅助以动能定理和功能关系;D、匀速圆周运动,结合带电粒子在匀强磁场中的运动规律,找圆心定半径求时间,应用牛顿定律结合圆周运动规律求解;
E、非匀变速曲线运动,一般用动能定理、功能关系去处理。
(4)对于粒子连续通过几个不同种类的场时,要分阶段进行处理;
(5)画出粒子运动轨迹,灵活选择不同的运动规律。
由于带电粒子在复合场中受力情况复杂、运动情况多变,往往出现临界问题,这时应以题目中的?最大?、?最高?、?至少?等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解.
类型三、多场并存有约束的运动
带电粒子在所运动的空间不仅有电场、磁场、重力场中的任意两个场或者三个场同时存在,且在运动中还受到了绳子、杆、圆环等的约束,导致带电粒子在空间不能自由移动,也就是说除了受到场力外还受到其他约束力作用,这一类型的题目也是压轴题常考题型!
这类试题要求同学们的能力主要不是对事物的结局护着某一个侧面进行描述,而是注重对事物整体的结构,功能和作用的认识!以及对事物发展过程中分析理解,要求我们对已经学习过的知识结合,重组、转移、迁移来解决问题,同时需要构建物理模型。
带电粒子在复合场中的运动,由于受到约束力作用,是物体的运动比不受约束的时候形式更加简化。不同的约束条件可以构造不同的模型:绳子的约束作用可以构造圆周运动模型;把物体串在轻杆上,可以构造直线运动模型等。因此我们要根据约束的特性,确定带电粒子的运动形式,根据基本运动的规律来解决问题。
另外我们还要充分利用功能关系来分析运动。因为带电粒子在复合场中的运动,在多种力的作用下运动的形式可能比较简单,但是规律可能更加复杂!比如变加速直线运动,此时我们无法根据其运动规律解题。这时利用能量分析和功能关系便能破解这个难题。如果磁场是复合场的一部分,我们往往要利用洛伦兹力不做功这一个特点,但是当带电粒子做变速运动时,洛伦兹力往往会发生变化,引起其他力发生变化,从而导致其他力做功也发生变化。
对于带电粒子在有摩擦的约束环境中运动时,我们还要充分利用过程整体法和电场力做功、重力做功与路径无关的思想。电场力重力做功只由初末位置决定,与路径无关的这一特性,使我们认识到不管过程有没有往复,还是运动过程中各个阶段是相互区别的,我们都可以不考虑过程细节,从全过程去解决问题。比如往复性的直线运动问题,如果是通过受力分析,分段计算,在求和,计算便显得非常复杂;而我们用重力电场力做功与路径无关的思想,就可以分析出带电粒子最终能停在何处之类的问题,再结合过程整体法,就可以利用动能定理或者功能关系简便的求得结果!
2013年江苏省高考物理真题
以下是 为大家整理的2013年江苏省高考物理真题的文章,供大家学习参考!
一、单项选择题:本题共5小题,每小题3 分,共计15 分. 每小题只有一个选项符合题意.
1. 火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知:
(A)太阳位于木星运行轨道的中心
(B)火星和木星绕太阳运行速度的大小始终相等
(C)火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方
(D)相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积
2. 如图所示,“旋转秋千”中的两个座椅A、B 质量相等,通过相同长度的缆绳悬挂在旋转圆盘上. 不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是
(A)A 的速度比B 的大
(B)A 与B 的向心加速度大小相等
(C)悬挂A、B 的缆绳与竖直方向的夹角相等
(D)悬挂A 的缆绳所受的拉力比悬挂B 的小
3. 下列选项中的各 圆环大小相同,所带电荷量已在图中标出,且电荷均匀分布,各 圆环间彼此绝缘. 坐标原点o处电场强度的是
4. 在输液时,药液有时会从针口流出体外,为了及(时C)发摇现,设计了一种报警装置,电路如图所示. M 是贴在针口处的传感器,接触到药液时其电阻 发生变化,导致S 两端电压U 增大, 装置发出警报,此时
(A) 变大,且R 越大,U 增大越明显
(B) 变大,且R 越小,U 增大越明显
(C) 变小,且R 越大,U 增大越明显
(D) 变小,且R 越小,U 增大越明显
5. 水平面上,一白球与一静止的灰球碰撞,两球质量相等. 碰撞过程的频闪照片如图所示,据此可推断,碰撞过程中系统损失的动能约占碰撞前动能的
(A)30%
(B)50%
(C)70%
(D)90%
二、多项选择题:本题共4 小题,每小题4 分,共计16 分. 每小题有多个选项符合题意. 全部选对的得4 分,选对但不全的得2 分,错选或不答的得0 分.
6. 将一电荷量为+Q 的小球放在不带电的金属球附近,所形成的电场线分布如图所示,金属球表面的电势处处相等. a、b 为电场中的两点,则
(A)a 点的电场强度比b 点的大
(B)a 点的电势比b 点的高
(C)检验电荷-q 在a 点的电势能比在b 点的大
(D)将检验电荷-q 从a 点移到b 点的过程中,电场力做负功
7. 如图所示,从地面上同一位置抛出两小球A、B,分别落在地面上的M、N 点,两球运动的高度相同. 空气阻力不计,则
(A)B 的加速度比A 的大
(B)B 的飞行时间比A 的长
(C)B 在点的速度比A 在点的大
(D)B 在落地时的速度比A 在落地时的大
8. 如图所示,理想变压器原线圈接有交流电源,当副线圈上的滑片P 处于图示位置时,灯泡L 能发光. 要使灯泡变亮,可以采取的方法有
(A)向下滑动P
((B))增大交流电源的电压
(C)增大交流电源的频率
(D)减小电容器C 的电容
9. 如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连. 弹簧处于自然长度时物块位于O点(图中未标出). 物块的质量为m,AB =a,物块与桌面间的动摩擦因数为 . 现用水平向右的力将物块从O 点拉至A 点,拉力做的功为W. 撤去拉力后物块由静止向左运动, 经O点到达B点时速度为零. 重力加速度为g. 则上述过程中
(A)物块在A点时,弹簧的弹性势能等于
(B)物块在B点时,弹簧的弹性势能小于
(C)经O点时,物块的动能小于
(D)物块动能时弹簧的弹性势能小于物块在B点时弹簧的弹性势能
三、简答题:本题分必做题(第10、11 题) 和选做题(第12 题) 两部分,共计42 分. 请将解答填写在答题卡相应的位置.
必做题
10. (8 分)为探究小灯泡的电功率P 和电压U 的关系,小明测量小灯泡的电压U 和电流I,利用P =UI 得到电功率. 实验所使用的小灯泡规格为“3.0 V 1.8 W”,电源为12 V 的电池,滑动变阻器的阻值为10 .
(1)准备使用的实物电路如题10-1 图所示. 请将滑动变阻器接入电路的正确位置. (用笔画线代替导线)
(题10-1 图)
(2)现有10 、20 和50 的定值电阻,电路中的电阻R1 应选 的定值电阻.
(3)测量结束后,应先断开开关,拆除两端的导线,再拆除其他导线,最后整理好器材.
(4)小明处理数据后将P、 描点在坐标纸上,并作出了一条直线,如题10-2 图所示. 请指出图象中不恰当的地方.
11. (10 分)某兴趣小组利用自由落体运动测定重力加速度,实验装置如图所示. 倾斜的球槽中放有若干个小铁球,闭合开关K,电磁铁吸住第1 个小球. 手动敲击弹性金属片M,M 与触头瞬间分开, 第1 个小球开始下落,M 迅速恢复,电磁铁又吸住第2 个小球. 当第1 个小球撞击M 时,M 与触头分开,第2 个小球开始下落
……. 这样,就可测出多个小球下落的总时间.
(1)在实验中,下列做法正确的有
(A)电路中的电源只能选用交流电源
(B)实验前应将M 调整到电磁铁的正下方
(C)用直尺测量电磁铁下端到M 的竖直距离作为小球下落的高度
(D)手动敲击M 的同时按下秒表开始计时
(2)实验测得小球下落的高度H =1. 980 m,10 个小球下落的总时间T =6. 5 s. 可求出重力加速度g = . (结果保留两位有效数字)
(3)在不增加实验器材的情况下,请提出减小实验误差的两个办法.
(4)某同学考虑到电磁铁在每次断电后需要时间 磁性才消失,因此,每个小球的实际下落时间与它的测量时间相差 ,这导致实验误差. 为此,他分别取高度H1 和H2,测量n个小球下落的总时间T1 和T2. 他是否可以利用这两组数据消除 对实验结果的影响? 请推导说明.
12. 选做题本题包括A、B、C 三小题,请选定其中两小题,并在相应的答题区域内作答. 若多做,则按A、B 两小题评分.
A. [选修3-3](12 分)
如图所示,一定质量的理想气体从状态A 依次经过状态B、C 和D 后再回到状态A. 其中,A?B 和C?D 为等温过程,B?C 和D?A 为绝热过程(气体与外界无热量交换). 这就是的“卡诺循环”.
(1)该循环过程中,下列说法正确的是.
(A)A?B 过程中,外界对气体做功
(B)B?C 过程中,气体分子的平均动能增大
(C)C?D 过程中,单位时间内碰撞单位面积器壁的分子数增多
(D)D?A 过程中,气体分子的速率分布曲线不发生变化
(2)该循环过程中,内能减小的过程是 (选填“A ?B”、“B ?C”、“C ?D”或“D?A”). 若气体在A?B 过程中吸收63 kJ 的热量,在C?D 过程中放出38 kJ 的热量,则气体完成一次循环对外做的功为kJ.
(3)若该循环过程中的气体为1 mol,气体在A 状态时的体积为10 L,在B 状态时压强为A状态时的 . 求气体在B状态时单位体积内的分子数. ( 已知阿伏加德罗常数 ,计算结果保留一位有效数字)
B. [选修3-4](12 分)
(题12B-1 图)
(1)如题12B-1 图所示的装置,弹簧振子的固有频率是4 Hz. 现匀速转动把手,给弹簧振子以周期性的驱动力,测得弹簧振子振动达到稳定时的频率为1Hz,则把手转动的频率为.
(A) 1 Hz
(B) 3 Hz
(C) 4 Hz
(D) 5 Hz
(2)如题12B-2 图所示,两艘飞船A、B 沿同一直线同向飞行,相对地面的速度均为v(v 接近光速c). 地面上测得它们相距为L,则A 测得两飞船间的距离 (选填“大于”、“等于”或“小于”)L. 当B 向A 发出一光信号,A 测得该信号的速度为.
(3)题12B-3 图为单反照相机取景器的示意图, ABCDE为五棱镜的一个截面,AB BC. 光线垂直AB 射入,分别在CD 和EA 上发生反射,且两次反射的入射角相等,最后光线垂直BC 射出.若两次反射都为全反射,则该五棱镜折射率的最小值是多少?(计算结果可用三角函数表示)
(题12B-3 图)
C. [选修3-5](12 分)
(1)如果一个电子的德布罗意波长和一个中子的相等,则它们的也相等.
(题12C-1 图)
(A)速度
(B)动能
(C)动量
(D)总能量
(2)根据玻尔原子结构理论,氦离子(He+ )的能级图如题12C-1 图所示. 电子处在n =3 轨道上比处在n =5 轨道上离氦核的距离(选填“近”或“远”). 当大量He+处在n =4 的激发态时,由于跃迁所发射的谱线有条.
(3)如题12C-2 图所示,进行太空行走的宇航员A和B的质量分别为80kg和100 kg,他们携手远离空间站,相对空间站的速度为0. 1 m/ s. A 将B向空间站方向轻推后,A 的速度变为0. 2 m/ s,求此时B 的速度大小和方向.
(题12C-2 图)
四、计算题:本题共3 小题,共计47 分. 解答时请写出必要的文字说明、方程式和重要的演算步骤. 只写出最后答案的不能得分. 有数值计算的题,答案中必须明确写出数值和单位.
13. (15 分)如图所示,匀强磁场中有一矩形闭合线圈abcd,线圈平面与磁场垂直. 已知线圈的匝数N =100,边长ab =1. 0 m、bc =0. 5 m,电阻r =2 . 磁感应强度B 在0 ?1 s 内从零均匀变化到0. 2 T. 在1?5 s 内从0. 2 T 均匀变化到-0. 2 T,取垂直纸面向里为磁场的正方向.
求:
(1)0. 5 s 时线圈内感应电动势的大小E 和感应电流的方向;
(2)在1?5s内通过线圈的电荷量q;
(3)在0?5s 内线圈产生的焦耳热Q.
14. (16 分)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出, 砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验. 若砝码和纸板的质量分别为m1 和m2,各接触面间的动摩擦因数均为 . 重力加速度为g.
(1)当纸板相对砝码运动时,求纸板所受摩擦力大小;
(2)要使纸板相对砝码运动,求所需拉力的大小;
(3)本实验中, =0.5kg, =0.1kg, ,砝码与纸板左端的距离d =0.1 m,取g =10 . 若砝码移动的距离超过l=0.002 m,人眼就能感知.为确保实验成功,纸板所需的拉力至少多大?
15. (16 分)在科学研究中,可以通过施加适当的电场和磁场来实现对带电粒子运动的控制. 如题15-1 图所示的xOy 平面处于匀强电场和匀强磁场中,电场强度E 和磁感应强度B 随时间t 作周期性变化的图象如题15-2 图所示. x 轴正方向为E 的正方向,垂直纸面向里为B的正方向. 在坐标原点O 有一粒子P,其质量和电荷量分别为m 和+q. 不计重力. 在 时刻释放P,它恰能沿一定轨道做往复运动.
(1)求P在磁场中运动时速度的大小 ;
(2)求 应满足的关系;
(3)在 ( )时刻释放P,求P速度为零时的坐标.
带电粒子在电场中的运动
九、带电粒子在电场中的运动
一、解决带电粒子在电场中运动的基本思路
1.受力分析:(1)对于电子、氕、氘、氚、核、 粒子及离子等,一般不考虑重力;
(2)对于带电的颗粒,液滴、油滴、小球、尘埃等,除在题目中明确说明或暗示外,一般均应考虑重力。
2.运动轨迹和过程分析.
带电粒子运动形式决定于:粒子的受力情况和初速度情况.
3.解题的依据.
(1)力的观点:牛顿运动定律和运动学公式.
(2)能量的观点:电场力做功与路径无关;动能定理:能的转化与守恒规律.
(3)动量的观点.
二、带电粒子在电场中运动判断与分析
1.带电粒子在电场中的直线运动
课本例1
[问题1]如图所示,在匀强电场E中,一带电粒子-q的初速度v0恰与电场线方向相同,则带电粒子-q在开始运动后,将( )
A.沿电场线方向做匀加速运动 B.沿电场线方向做变加速运动
C.沿电场线方向做匀减速运动 D.偏离电场线方向做曲线运动
思考:带电粒子-q的初速度v0恰与电场线方向相反,情况怎样?
解析:带电粒子-q受力有什么特点?方向与初速度v0的方向的关系怎么样?
[问题2] 如图3-2-1所示,在点电荷+Q的电场中,一带电粒子-q的初速度v0恰与电场线QP方向相同,则带电粒子-q在开始运动后,将( )
A.沿电场线QP做匀加速运动 B.沿电场线QP做变减速运动
C.沿电场线QP做变加速运动 D.偏离电场线QP做曲线运动
思考:带电粒子-q的初速度v0 恰与电场线QP方向相反,情况怎样?若初速度v0恰与电场线QP方向垂直,可能出现什么情况?
解析:带电粒子-q受力有什么特点?方向与初速度v0的方向的关系怎么样?由库仑定律和牛顿第二定律确定.
[问题3]如图3-2-3所示的直线是某电场中的一条电场线,A、B是这条电场线上两点.已知一电子经过A点的速度为vA并向B点运动,一段时间以后,该电子经过B点的速度为vB,且vA与vB的方向相反.则:( )
A.A点的电势一定高于B点的电势 B.A点的场强一定大于B点的场强
C.电子经过A点时的电势能一定大于它经过B点时的电势能
D.电子经过A点时的动能一定大于它经过B点时的动能
思考:一根电场线能确定什么?为什么不能判断场强大小?
[问题4]一个带正电荷的质点P放在两个等量负电荷A、B的电场中,P恰好在AB连线的垂直平分线的C点处,现将P在C点由静止释放,设P只受电场力作用,则( )
A.P由C向AB连线中点运动过程中,加速度可能越来越小而速度越来越大
B.P由C向AB连线中点运动过程中,加速度可能先变大后变小,最后为零,而速度一直变大
C.P运动到与C关于AB的对称点C′静止
D.P不会静止,而是在C与C′间来回振动
同步练习
1.下列粒子从初速度为零的状态经过加速电压为U的电场后,哪种粒子的速率最大 [ ]
A.质子 B.氘核 C.α粒子 D.钠离子
2.在匀强电场中,将质子和α粒子由静止释放,若不计重力,当它们获得相同动能时,质子经历的时间t1和α粒子经历的时间t2之比为[ ]
A.1∶1 B.1∶2 C.2∶1 D.4∶1
3.如图3-2-19所示,质量为m,带电量为+q的滑块,沿绝缘斜面匀速下滑,当滑块滑至竖直向下的匀强电场区域时,滑块的运动状态 [ ]
A.继续匀速下滑 B.将加速下滑
C.将减速下滑 D.上述三种情况都有可能发生
4.如图3-2-20所示,两平行金属板间的距离为d,两板间的电压为U,今有一电子从两板间的O点沿着垂直于板的方向射出到达A点后即返回,若OA距离为h,则此电子具有的初动能是 [ ]
A.edh/U B.edhU C.Ue/(dh) D.ehU/d
5.质子和α粒子的质量比为m1∶m2=1∶4,带电量之比为q1∶q2=1∶2,当它们从静止开始由同一匀强电场加速,通过相同的位移,则它们的速度之比v1∶v2:=______,动能比Ek1∶Ek2=______,动量比p1∶p2=______.
6.平行板电容器水平放置,板间的距离为d,一个半径为r、密度为ρ的带电油滴在两板间.当电容器的电压为U时,该油滴在电场中做匀速运动,由此可知油滴的带电量q=______C.
7.一个质量为m,带电量为q的油滴从空中自由下落时间t1后,进入水平放置的带电极板间,再经过时间t2速度为零,则电场力是重力的______倍.
8.在真空中的A、B两个点电荷,相距为L,质量分别为m和2m,它们由静止开始运动,开始时点电荷A的加速度为a,经过一段时间,点电荷B的加速度也为a,速率为v,那么这时点电荷A的速率为______,两点电荷相距______,它们的电势能减少了______.(不考虑重力的影响)
9.在一个水平面上建立x轴,在过原点O垂直于x轴的平面的右侧空间有一匀强电场,场强大小E=6×105N/C,方向与x轴正方向相同,在O处放一个带电量q=-5×10-8C,质量m=10g的绝缘物块,物块与水平面间的动摩擦因数μ=0.2,沿x轴正方向给物块一个初速度v0=2m/s,如图3-2-22所示,求物块最终停止时的位置.(g取10m/s2)
10.如图3-2-23所示,一个带电物体P,沿一个绝缘的倾斜轨道向上运动,运动过程中P的带电量保持不变.空间存在着匀强电场(未在图中画出).已知P经过A点时动能为30J,经过B点时它的动能减少了10J,机械能增加了20J,电势能减少了35J,它继续运动到C点时速度减为零.
(1)在它从A到C的运动过程中,克服摩擦力做功多少?
(2)它到达C点后还会不会向下运动?为什么?
11.如图所示,Q为固定的正点电荷,A、B两点在Q点的正上方和Q相距分别为h和0.25h,将另一点电荷从A点由静止释放运动到B点时速度正好又变为零,若此电荷在A点处的加速度大小为3/4g
求:(1)此电荷在B点处的加速度
(2)A、B两点间的电势差(用Q、h表示)
2.带电粒子在电场中的曲线运动
[问题5]如图3-2-6所示,两平行金属板间有匀强电场,场强方向指向下板,一带电量为-q的粒子,以初速度v0垂直电场线射入电场中,则粒子在电场中所做的运动可能是( )
A.沿初速度方向做匀速运动
B.向下板方向偏移,做匀变速曲线运动
C.向上板方向偏移,轨迹为抛物线
D.向上板偏移,轨迹为一段圆弧
将带电粒子的运动与重力场中的平抛运动类比,寻求解决问题的思路.建立直角坐标系,将运动分解为垂直于场强方向和沿场强方向分别加以讨论.
例、带电粒子经电场偏转: 处理方法:灵活应用运动的合成和分解。
带电粒子在匀强电场中作类平抛运动, U、 d、 l、 m、 q、 v0已知。
① 穿越时间:
②末速度:
③侧向位移: ,讨论:对于不同的带电粒子
(1)若以相同的速度射入,则y与 成正比
(2)若以相同的动能射入,则y与 成正比
(3)若以相同的动量射入,则 y与 成正比
(4)若经相同的电压U0加速后射入,则y= ,与m、q 关,随加速电压的增大而 ,随偏转电压的增大而 。
④偏转角正切: (从电场出来时粒子速度方向的反向延长线必然过 )
练习1.如图平行金属板长为L,一个带电为+q,质量为m的粒子以初速度v0紧贴上板垂直射入电场,刚好从下板边缘射出,末速度恰与下板成30O角,粒子重力不计。求:①粒子未速度大小 ②电场强度 ③两极间距离d
练习2.三个质量相等,分别带正电、负电和不带电的小球,从平行板电场边缘的P点以相同初速度V0垂直射入电场,如图所示,它们分别落到A、B、C三点,则( )
A、落到A点的小球带正电,落到B点的不带电
B、三小球在电场中的运动时间相等
C、三小球到达正极板时的动能满足EKA>EKB>EAC标
D、三小球在电场中运动时的加速度满足关系aA>aB>ac
示波管原理:
例、
[问题6]已知氢原子中的质子和电子所带电量都是e,电子质量为me,电子绕核做匀速圆周运动,轨道半径为r,试确定电子做匀速圆周运动的线速度的大小和角速度的大小,以及电子运动周期.
[问题7]如图3-2-7所示,直线MN为点电荷Q的电场中的一条电场线.带正电的粒子只在电场力的作用下,沿着曲线由a向b运动,则( )
A.点电荷Q是正电荷 B.电势ψa>ψb
C.场强Ea>Eb D.带电粒子的动能EKa>EKb
同步练习
1.平行金属板板长为L,相距为d,两板间电势差为U.带电量为q,质量为m的粒子以速度v垂直板间电场方向进入板间电场区,并飞离出电场区域,则其侧移y的大小为 [ ]
A.与板长L成正比 B.与板间距离成反比
C.与两板间电势差U成正比 D.与粒子初速度v成正比
2.平行板电容器垂直于水平放置,板间的距离为d,电压为U,每个板带电量为Q.一个质量为m,带电量为q的粒子从两板上端连线中点以初速度v竖直向下射入电场,打在右板的M点.不计粒子的重力,现使右板向右平移d/2,而带电粒子仍从原处射入电场,为了使粒子仍然打在M点,下列措施哪些可行[ ]
A.保持Q、m、v不变,减小q
B.保持Q、U、v不变,减小q/m
C.保持Q、m、U不变,减小v
D.保持Q、m、U不变,增大v
3.两带有等量异种电荷的平行板间有一匀强电场,一个带电粒子以平行于极板的方向进入此电场,要使此粒子离开电场时偏转距离为原来的1/2(不计粒子所受重力),可采用方法为 [ ]
A.使粒子初速为原来2倍 B.使粒子初动能为原来2倍
C.使粒子初动量为原来2倍 D.使两板间电压为原来2倍
4.电子在电势差U1的加速电场由静止开始运动,然后射入电势差U2的两块平行极板间的电场中,入射方向跟极板平行,整个装置处于真空中,重力可忽略。在满足电子能射出平行板区的条件下,下列四种情况下,一定能使电子的偏转角θ变大的是:( )
A、U1变大,U2变大 B、U1变小,U2变大
C、U1变大,U2变小 D、U1变小,U2变小
5.如图,在绝缘光滑半环轨道上端,一个质量为m,带电量为+q的小球由静止开始沿轨道运动,则( )
A、小球在运动程中机械能守恒
B、小球经过环的最低点时速度最大
C、在最低点球对环的压力为(mg+Eq)
D、在最低点球对环的压力为3(mg+Eq)
6.如图,电子以VO的速度沿与电场垂直的方向从A点飞入匀强电场并且从另一端B点沿与场强方向成150o角的方向飞出。设电子的电量为e,质量为m,则A、B两点间的电势差大小为 。
7.图示为一个说明示波管工作的原理图,电子径加速后,以速度v0垂直进入偏转电场,离开偏转电场时偏转量为h,设两平行板间的距离为d,电势差为U,板长为l。每单位电压引起的偏转量(h/U)叫做示波管的灵敏度,为了提高示波管的灵敏度,可以采用的方法是( )
A、增大两板间的电势差 B、尽可能使板长l做得短些
C、尽可能使两板间的距离d减小些 D、增大进入偏转电场电子的速率v
8.经过相同电场加速后的质子和α粒子垂直于电场线的方向飞进两平行板间的匀强电场,则它们通过该电场所用时间之比为______,通过该电场后发生偏转的角度的正切之比为.
9.如图3-2-25所示,一条长为l的细线,上端固定,下端拴一质量为m的带电小球,将它置于一匀强电场中,电场强度大小为E,方向是水平的,已知当细线离开竖直位置的偏角为α时,小球处于平衡.
(1)小球带何种电荷?求出小球所带电量.
(2)如果使细线的偏角由α增大到j,然后将小球由静止开始释放,则j应为多大,才能使细线到达竖直位置时小球的速度刚好为零?
三、研究带电粒子在电场中运动的方法
1.运用牛顿定律研究带电粒子在电场中运动
基本思路:先用牛顿第二定律求出粒子的加速度,进而确定粒子的运动形式,再根据带电粒子的运动形式运用相应的运动学规律求出粒子的运动情况.
[问题1]如图3-2-8所示,一个质量为m,带电量为q的粒子,从两平行板左侧中点沿垂直场强方向射入,当入射速度为v时,恰好穿过电场而不碰金属板.要使粒子的入射速度变为v/2,仍能恰好穿过电场,则必须再使( )
A.粒子的电量变为原来的1/4 B.两板间电压减为原来的1/2
C.两板间距离增为原来的4倍 D.两板间距离增为原来的2倍
[问题2]如图3-2-9所示,一个质量为m,带电量为q的粒子,仅受电场力作用,以恒定的速率v沿一圆弧做圆周运动,从圆周上A点到B点速度方向改变了θ角,A、B两点间弧长为S,求:A、B两点处的场强的大小及A、B两点间的电势差.
2.运用动能定理研究带电粒子在电场中运动
基本思路;根据电场力对带电粒子做功的情况,分析粒子的动能与势能发生转化的情况,运用动能定理或者运用在电场中动能与电势能相互转化而它们的总和守恒的观点,求解粒子的运动情况.
[问题1]如图3-2-10所示,质量为m,电量为e的电子,从A点以速度v0垂直场强方向射入匀强电场中,从B点射出电场时的速度方向与电场线成120度角,则A、B两点间的电势差是多少?
四、带电微粒在复合场中的运动
由于带电质点的重力不能忽略,因此带电质点在重力和电场力的作用下运动,重力和电场力的合力使带电质点产生加速度;合力的作用效果在位移上的积累使带电物体的动能发生变化;合力在时间上的积累使带电物体的动量发生变化.因此,我们可以运用牛顿第二定律、动量定理或动能定理分析解决带电物体在重力场和电场中运动问题.
1.如图3-2-11所示,在竖直平面内,有一半径为R的绝缘的光滑圆环,圆环处于场强大小为E,方向水平向右的匀强电场中,圆环上的A、C两点处于同一水平面上,B、D分别为圆环的最高点和最低点.M为圆环上的一点,∠MOA=45°.环上穿着一个质量为m,带电量为+q的小球,它正在圆环上做圆周运动,已知电场力大小qE等于重力的大小mg,且小球经过M点时球与环之间的相互作用力为零.试确定小球经过A、B、C、D点时的动能各是多少?
2.如图3-2-12所示,在水平向右的匀强电场中的A点,有一个质量为m,带电量为-q的油滴以速度v竖直向上运动.已知当油滴经过最高点B时,速度大小也为v.求:场强E的大小及A、B两点间的电势差.
解析:油滴在重力和电场力两个恒力作用下,从A向B运动.这一运动可以看成是竖直上抛运动和水平方向上初速度为零的匀加速直线运动的合运动.所以可以选择有关运动学的知识和动能定理解题.
3.如图3-2-26所示,在竖直向下的匀强电场中,使一个带负电荷的小球从斜轨道上的A点静止滑下,若使小球通过半径为R的圆轨道顶端的B点时不落下来,求至少应使A点在斜轨道上的高度h为多少?设轨道是光滑而又绝缘的,小球的重力大于它所受的电场力.
五、带电粒子在交变电场中的运动
在两个相互平行的金属板间加交变电压时,在两板间便可获得交变电场.此类电场从空间看是匀强的,即同一时刻,电场中各个位置处电场强度的大小、方向都相同;从时间上看是变化的,即电场强度的大小、方向都可随时间变化.
研究带电粒子在这种交变电场中的运动,关键是根据电场变化的特点,利用牛顿第二定律正确地判断粒子的运动情况.
1.如图3-2-13所示,A、B是一对平行的金属板.在两板间加上一周期为T的交变电压u.A板的电势ψA=0,B板的电势ψB随时间的变化规律为;在0到T/2的时间内,ψB=U0(正的常数);在T/2到T的时间内,ψB=-U0;在T到3T/2的时间内,ψB=U0;在3T/2到2T的时间内.ψB=-U0……,现有一电子从A板上的小孔进入两板间的电场区内.设电子的初速度和重力的影响均可忽略,则( )
A.若电子是在t=0时刻进入的,它将一直向B板运动
B.若电子是在t=T/8时刻进入的,它可能时而向B板运动,时而向A板运动,最后打在B板上
C.若电子是在t=3T/8时刻进入的,它可能时而向B板运动,时而向A板运动,最后打在B板上
D.若电子是在t=T/2时刻进入的,它可能时而向B板、时而向A板运动.
解析:关键在于分析带电粒子的受力、加速度、速度的变化情况,根据位移变化确定运动情况.运用牛顿第二定律和运动学公式讨论比较麻烦,所以考虑应用图像.
2.如图3-2-21所示,在平板电容器A、B两板上加上如图所示的交变电压,开始时B板电势比A板高,这时两板中间原来静止的电子在电场力作用下开始运动,设A、B两板间的距离足够大,则下述说法中正确的是[ ]
A.电子先向A板运动,然后向B板运动,再返向A板做周期性来回运动
B.电子一直向A板运动
C.电子一直向B板运动
D.电子先向B板运动,然后向A板运动,再返回B板做周期性来回运动
3.如图3-2-27(1)中,A和B表示在真空中相距为d的两平行金属板,加上电压后,它们之间的电场可视为匀强电场,图(2)表示一周期性的交变电压的波形,横坐标代表时间t,纵坐标代表电压U,从t=0开始,电压为一给定值U0,经过半周期,突然变为-U0;再过半个周期,又突然变为U0……如此周期性地交替变化.
在t=0时,将上述交变电压U加在A、B两板上,使开始时A板电势比B板高,这时在紧靠B板处有一初速为零的电子(质量为m、电量为e)在电场作用下开始运动,要想使这个电子到达A板时具有最大的动能,则交变电压的频率最大不能超过多少?
4.如图3-2-28所示,长为l、相距为d的两平行金属板与一交流电源相连(图中未画出),有一质量为m、带电量为q的带负电的粒子以初速度v0从板中央水平射入电场,从飞入时刻算起,A、B板间所加电压的变化规律如图所示,为了使带电粒子离开电场时速度方向恰好平行于金属板,问:
(1)加速电压值U0的取值范围多大?(2)交变电压周期T应满足什么条件?