您现在的位置是: 首页 > 专业报考 专业报考

数学高考2017四川-2017年数学四川高考试卷

tamoadmin 2024-09-10 人已围观

简介1.2017年高考的改革数学部分的几何题是不考了还是作为必考题考查?2.我2017年高考语文成绩98,数学成绩86,英语成绩109,理科综合成绩118,总分411,请问复3.2017年数学高考卷子的六道大题4.2017年重庆高考理科数学试卷结构 各题型分值是多少分5.17年高考数学是怎么了2017年高考的改革数学部分的几何题是不考了还是作为必考题考查?2017年数学考试大纲中删去了选考模块4-1“

1.2017年高考的改革数学部分的几何题是不考了还是作为必考题考查?

2.我2017年高考语文成绩98,数学成绩86,英语成绩109,理科综合成绩118,总分411,请问复

3.2017年数学高考卷子的六道大题

4.2017年重庆高考理科数学试卷结构 各题型分值是多少分

5.17年高考数学是怎么了

2017年高考的改革数学部分的几何题是不考了还是作为必考题考查?

数学高考2017四川-2017年数学四川高考试卷

2017年数学考试大纲中删去了选考模块4-1“几何证明选讲”的内容,体现了削枝强干,减少重复考查,强化学科体系的导向。考查内容删去“几何证明选讲” 模块的直接理由是因为这部分内容考查的是初中平面几何的知识,几何的主要知识内容在立体几何和解析几何中均有体现,不需要再单独列为专题考查。同时在过去的教学大纲和2017年修订后的课程标准中,都不包含这部分内容。实际上,这也体现了对数学教育的更深层次的认识。

我2017年高考语文成绩98,数学成绩86,英语成绩109,理科综合成绩118,总分411,请问复

总分一共750分,前三门满分450,你的成绩,前三门比较均衡,大致完成60%,综合成绩比较差,只完成40%,看来是综合课程的能力比较差。

如果复读,应该在综合课程上下功夫,分数提升还是有的,大致在60分左右的空间。

当然,前三门,复读的话,也会有所提升。

不妨,联系我,给你个小方法,通过一年的努力,争取个大的飞跃,也不是不可能,关键还看你自己的实践,是否用功,用心,不断的进步。

2017年数学高考卷子的六道大题

17.(12分)

△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长

18.(12分)

如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.

19.(12分)

为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ?).

(1)设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网

(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)试说明上述监控生产过程方法的合理性;

(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.

用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).

附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ<Z<μ+3σ)=0.9?4,0.9?416≈0.959?2,.

20.(12分)

已知椭圆C:x?/a?+y?/b?=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

21.(12分)

已知函数=ae?^x+(a﹣2)e^x﹣x.

(1)?讨论的单调性;

(2)?若有两个零点,求a的取值范围.

(二)选考题:共10分。

请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。

22.[选修4-4,坐标系与参数方程](10分)

在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.

(1)若a=-1,求C与l的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.

23.[选修4—5:不等式选讲](10分)

已知函数f(x)=–x?+ax+4,g(x)=│x+1│+│x–1│.

(1)当a=1时,求不等式f(x)≥g(x)的解集;

(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.

2017年重庆高考理科数学试卷结构 各题型分值是多少分

12个选择题(5分一个),4个填空题(5分一个),17题三角函数和解三角形或数列(12分),18、19空间几何、统计(12分),20解析几何(12分),21倒数(12分),22、23二选一解不等式或参数方程(10分)

17年高考数学是怎么了

2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。

2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。既注重考查考生对基础知识的掌握程度,符合教育部颁发的《高中数学课程标准》的要求,又在一定程度上加以适度创新,注重考查考生的数学思维和能力。

体现出命题人关注考生学习数学所具备的素养和潜力,倡导用数学的思维进行数学学习,感受数学的思维过程。2017年高考数学试题评析: 加强理性思维考查,突出创新应用。

高考数学必考知识点归纳如下

1、平面向量与三角函数、三角变换及其应用,这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

2、概率和统计,这部分和生活联系比较大,属应用题。

3、考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运算解决问题。

4、考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

5、证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。

文章标签: # 数学 # 高考 # 考查