您现在的位置是: 首页 > 招生信息 招生信息

物理高考经典大题,物理高考经典例题

tamoadmin 2024-05-27 人已围观

简介1.求 一道关于示波器的物理高考压轴题 越多越好 谢谢2.高考物理关于竖直上抛运动的题目3.高一的物理题,高考题————力的分解,谢谢哦4.一道1999年广东物理高考题(关于牛顿第三定律的应用)5.2011江苏物理高考卷第九题求解.6.物理题,帮忙!7.高二物理常考类型题目8.高考的一道物理题试着解释一下,BC对冰壶在冰面上运动,依据功能原理f*s=1/2*m*v0^2从上可以看出,只要阻力在s上

1.求 一道关于示波器的物理高考压轴题 越多越好 谢谢

2.高考物理关于竖直上抛运动的题目

3.高一的物理题,高考题————力的分解,谢谢哦

4.一道1999年广东物理高考题(关于牛顿第三定律的应用)

5.2011江苏物理高考卷第九题求解.

6.物理题,帮忙!

7.高二物理常考类型题目

8.高考的一道物理题

物理高考经典大题,物理高考经典例题

试着解释一下,BC对

冰壶在冰面上运动,依据功能原理

f*s=1/2*m*v0^2

从上可以看出,只要阻力在s上做的总共等于冰壶的动能,在中间什么地方擦冰都行。

擦冰越靠近投掷线,冰壶的速度改变越晚,运行越快,总时间越短。

求 一道关于示波器的物理高考压轴题 越多越好 谢谢

甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。在第一段时间间隔内,两辆汽车的加速度大小不变,汽车乙的加速度大小是甲的两倍;在接下来的相同时间间隔内,汽车甲的加速度大小增加为原来的两倍,汽车乙的加速度大小减小为原来的一半。求甲乙两车各自在这两段时间间隔内走过的总路程之比。

S1:S2=5:7

.一质点开始时做匀速直线运动,从某时刻起受到一恒力作用。此后,该质点的动能可能

A. 一直增大

B. 先逐渐减小至零,再逐渐增大

C. 先逐渐增大至某一最大值,再逐渐减小

D. 先逐渐减小至某一非零的最小值,再逐渐增大

ABD

都是运动和牛顿的

高考物理关于竖直上抛运动的题目

(1)若已知A和B的初速度大小为v0,求它们最后的速度的大小和方向。

(2)若初速度的大小未知,求小木块A向左运动到达的最远处(从地面上看)离出发点的距离。

解法1: (1)A刚好没有滑离B板,表示当A滑到B板的最左端时,A、B具有相同的速度。设此速度为,A和B的初速度的大小为,则由动量守恒可得:

解得: , 方向向右    ①

(2)A在B板的右端时初速度向左,而到达B板左端时的末速度向右,可见A在运动过程中必经历向左作减速运动直到速度为零,再向右作加速运动直到速度为V的两个阶段。设为A开始运动到速度变为零过程中向左运动的路程,为A从速度为零增加到速度为的过程中向右运动的路程,L为A从开始运动到刚到达B的最左端的过程中B运动的路程,如图6所示。设A与B之间的滑动摩擦力为f,则由功能关系可知:

对于B      ②

对于A     ③     ④

由几何关系  ⑤

 由①、②、③、④、⑤式解得 ⑥

解法2: 对木块A和木板B组成的系统,由能量守恒定律得:

由①③⑦式即可解得结果

本题第(2)问的解法有很多种,上述解法2只需运用三条独立方程即可解得结果,显然是比较简捷的解法。

2、如图所示,长木板A右边固定一个挡板,包括挡板在内的总质量为1.5M,静止在光滑的水平面上,小木块B质量为M,从A的左端开始以初速度在A上滑动,滑到右端与挡板发生碰撞,已知碰撞过程时间极短,碰后木块B恰好滑到A的左端停止,已知B与A间的动摩擦因数为,B在A板上单程滑行长度为,求:

(1)若,在B与挡板碰撞后的运动过程中,摩擦力对木板A做正功还是负功?做多少功?

(2)讨论A和B在整个运动过程中,是否有可能在某一段时间里运动方向是向左的,如果不可能,说明理由;如果可能,求出发生这种情况的条件。

解:(1)B与A碰撞后,B相对A向左运动,A受摩擦力向左,而A的运动方向向右,故摩擦力对A做负功。

设B与A碰后的瞬间A的速度为,B的速度为,A、B相对静止时的共同速度为,由动量守恒得: ①

碰后到相对静止,对A、B系统由功能关系得:

由①②③式解得:(另一解因小于而舍去)

这段过程A克服摩擦力做功为④(2)A在运动过程中不可能向左运动,因为在B未与A碰撞之前,A受摩擦力方向向右,做加速运动,碰后A受摩擦力方向向左,做减速运动,直到最后共同速度仍向右,因此不可能向左运动。

B在碰撞之后,有可能向左运动,即,结合①②式得: ⑤

代入③式得: ⑥

另一方面,整个过程中损失的机械能一定大于或等于系统克服摩擦力做的功,即 ⑦ 即

故在某一段时间里B运动方向是向左的条件是⑧

3、光滑水平面上放有如图所示的用绝缘材料料成的"┙"型滑板,(平面部分足够长),质量为4m,距滑板的A壁为L1距离的B处放有一质量为m,电量为+q的大小不计的小物体,物体与板面的摩擦不计,整个装置处于场强为E的匀强电场中,初始时刻,滑板与物体都静止,试求:

(1)释放小物体,第一次与滑板A壁碰前物体的速度v1多大?

(2)若物体与A壁碰后相对水平面的速度大小为碰前的3/5,则物体在第二次跟A壁碰撞之前瞬时,滑板的速度v和物体的速度v2分别为多大?(均指对地速度)

(3)物体从开始运动到第二次碰撞前,电场力做功为多大?(碰撞时间可忽略)

3、解:(1)由动能定理

得 ①

(2)若物体碰后仍沿原方向运动,碰后滑板速度为V,

由动量守恒 得物体速度,故不可能 ②

∴物块碰后必反弹,由动量守恒 ③ 得 ④

由于碰后滑板匀速运动直至与物体第二次碰撞之前,故物体与A壁第二次碰前,滑板速度⑤ 。

物体与A壁第二次碰前,设物块速度为v2, ⑥

由两物的位移关系有: ⑦即 ⑧

由⑥⑧代入数据可得: ⑨

(3)物体在两次碰撞之间位移为S,

∴ 物块从开始到第二次碰撞前电场力做功

4(16分)如图5-15所示,PR是一块长为L=4 m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为m=0.1 kg.带电量为q=0.5 C的物体,从板的P端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入

磁场后恰能做匀速运动.当物体碰到板R端挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C点,PC=L/4,物体与平板间的动摩擦因数为μ=0.4.求:?

(1)判断物体带电性质,正电荷还是负电荷??

(2)物体与挡板碰撞前后的速度v1和v2;?

(3)磁感应强度B的大小;?

(4)电场强度E的大小和方向.?

解:(1)由于物体返回后在磁场中无电场,且仍做匀速运动,故知摩擦力为0,所以物体带正电荷.且:mg=qBv2?

(2)离开电场后,按动能定理,有:?-μmg=0-mv2?得:v2=2 m/s?

(3)代入前式求得:B= T?

(4)由于电荷由P运动到C点做匀加速运动,可知电场强度方向水平向右,且:?

(Eq-μmg)mv12-0?

进入电磁场后做匀速运动,故有:Eq=μ(qBv1+mg)?

由以上两式得:

5、 在原子核物理中,研究核子与核子关联的最有效途径是"双电荷交换反应".这类反应的前半部分过程和下述力学模型类似.两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态.在它们左边有一垂直于轨道的固定挡板P,右边有一小球C沿轨道以速度V0射向B球,如图2所示.C与B发生碰撞并立即结成一个整体D.在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然锁定,不再改变.然后,A球与挡板P发生碰撞,碰后A、D都静止不动,A与P接触而不粘连.过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失).已知A、B、C三球的质量均为.

(1)求弹簧长度刚被锁定后A球的速度.

(2)求在A球离开挡板P之后的运动过程中,弹簧的最大弹性势能.

分析:审题过程,①排除干扰信息:"在原子核物理中,研究核子与核子关联的最有效途径是"双电荷交换反应".这类反应的前半部分过程和下述力学模型类似."②挖掘隐含条件:"两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态",隐含摩擦不计和轻质弹簧开始处于自然状态(既不伸长,也不压缩),"C与B发生碰撞并立即结成一个整体D"隐含碰撞所经历的时间极短,B球的位移可以忽略,弹簧的长度不变,"A球与挡板P发生碰撞,碰后A、D都静止不动"隐含在碰撞中系统的动能由于非弹性碰撞而全部消耗掉,只剩下弹性势能。

此题若用分析法求解,应写出待求量与已知量的关系式,显然比较困难,由于物体所经历的各个子过程比较清楚,因此宜用综合法求解。在解题前,需要定性分析题目中由A、B、C三个小球和连结A、B的轻质弹簧组成的系统是如何运动的,这个问题搞清楚了,本题的问题就可较容易地得到解答.下面从本题中几个物理过程发生的顺序出发求解:

1、球C与B发生碰撞,并立即结成一个整体D,根据动量守恒,有

 (为D的速度) ①

2、当弹簧的长度被锁定时,弹簧压缩到最短,D与A速度相等,如此时速度为,由动量守恒得 ② 

当弹簧的长度被锁定后,D的一部分动能作为弹簧的弹性势能被贮存起来了.由能量守恒,有      ③

3、撞击P后,A与D的动能都为0,当突然解除锁定后(相当于静止的A、D两物体中间为用细绳拉紧的弹簧,突然烧断细绳的状况,弹簧要对D做正功),当弹簧恢复到自然长度时,弹簧的弹性势能全部转变成D的动能,设D的速度为,则有④

4、弹簧继续伸长,A球离开挡板P,并获得速度。当A、D的速度相等时,弹簧伸至最长.此时的势能为最大,设此时A、D的速度为,势能为·由动量守恒定律得

由机械能守恒定律得: ⑥

 由①、②两式联立解得:      ⑦

联立①②③④⑤⑥式解得 ⑧

 6、如图(1)所示为一根竖直悬挂的不可伸长的轻绳,下端挂一小物块A,上端固定在C点且与一能测量绳的拉力的测力传感器相连。已知有一质量为m0的子弹B沿水平方向以速度v0射入A内(未穿透),接着两者一起绕C点在竖直面内做圆周运动。在各种阻力都可忽略的条件下测力传感器测得绳的拉力F随时间t的变化关系如图(2)所示。已知子弹射入的时间极短,且图(2)中t=0为A、B开始以相同速度运动的时刻,根据力学规律和题中(包括图)提供的信息,对反映悬挂系统本身性质的物理量(例如A的质量)及A、B一起运动过程中的守恒量。你能求得哪些定量的结果?

解:由图2可直接看出,A、B一起做周期性运动,运动的周期T=2t0,令 m表示 A的质量,L表示绳长,v1表示 B陷入A内时即t=0时 A、B的速度(即圆周运动最低点的速度),v2表示运动到最高点时的速度,F1表示运动到最低点时绳的拉力,f2表示运动到最高点时绳的拉力,则根据动量守恒定律,得mv0=( m0+m)v1,在最低点和最高点处运用牛顿定律可得

F1-( m0+m)g=( m0+m)v12/L, F2+( m0+m)g=( m0+m)v22/L

根据机械能守恒定律可得 2L( m+m0)g=( m+m0) v12/2- ( m+m0) v22/2。

由图2可知F2=0 。F1=Fm。由以上各式可解得,反映系统性质的物理量是

m=Fm/6g-m0 ,L =36m02v02 g/5Fm2,

A、B一起运动过程中的守恒量是机械能E,若以最低点为势能的零点,则E=(m+m0)v12/2。由几式解得E=3m02v02g/Fm。

7.(15分)中子星是恒星演化过程的一种可能结果,它的密度很大。现有一中子星,观测到它的自转周期为T=1/30s。向该中子星的最小密度应是多少才能维持该星体的稳定,不致因自转而瓦解。计等时星体可视为均匀球体。(引力常数G=6.67×10-11m3/kg·s2)

8.(20分)曾经流行过一种向自行车车头灯供电的小型交流发电机,图1为其结构示意图。图中N、S是一对固定的磁极,abcd为固定在转轴上的矩形线框,转轴过bc边中点、与ab边平行,它的一端有一半径r0=1.0cm的摩擦小轮,小轮与自行车车轮的边缘相接触,如图2所示。当车轮转动时,因摩擦而带动小轮转动,从而使线框在磁极间转动。设线框由N=800匝导线圈组成,每匝线圈的面积S=20cm2,磁极间的磁场可视作匀强磁场,磁感强度B=0.010T,自行车车轮的半径R1=35cm,小齿轮的半径R2=4.cm,大齿轮的半径R3=10.0cm(见图 2)。现从静止开始使大齿轮加速转动,问大齿轮的角速度为多大才能使发电机输出电压的有效值U=3.2V?(假定摩擦小轮与自行车轮之间无相对滑动)

7.(15分)参考解答:

考虑中子星赤道处一小块物质,只有当它受到的万有引力大于或等于它随星体一起旋转所需的向心力时,中子星才不会瓦解。

设中子星的密度为ρ,质量为M,半径为R,自转角速度为ω,位于赤道处的小块物质质量为m,则有GMm/R2=mω2R 且ω=2π/T,M=4/3πρR3

由以上各式得:ρ=3π/GT2

代人数据解得:ρ=1.27×1014kg/m3

8.(20分)参考解答:

当自行车车轮转动时,通过摩擦小轮使发电机的线框在匀强磁场内转动,线框中产生一正弦交流电动势,其最大值ε=ω0BSN

式中ω0为线框转动的角速度,即摩擦小轮转动的角速度。

发电机两端电压的有效值U=/2εm

设自行车车轮转动的角速度为ω1,由于自行车车轮与摩擦小轮之间无相对滑动,有

R1ω1=R0ω0

小齿轮转动的角速度与自行车轮转动的角速度相同,也为ω1。设大齿轮转动的角速度为ω,有R3ω=R2ω1

由以上各式解得ω=(U/BSN)(R2r0/R3r1) 代入数据得ω=3.2s-1

9.(22分)一传送带装置示意如图,其中传送带经过AB区域时是水平的,经过BC区域时变为圆弧形(圆弧由光滑模板形成,未画出),经过CD区域时是倾斜的,AB和CD都与BC相切。现将大量的质量均为m的小货箱一个一个在A处放到传送带上,放置时初速为零,经传送带运送到D处,D和A的高度差为h。稳定工作时传送带速度不变,CD段上各箱等距排列,相邻两箱的距离为L。每个箱子在A处投放后,在到达B之前已经相对于传送带静止,且以后也不再滑动(忽略经BC段时的微小滑动)。已知在一段相当长的时间T内,共运送小货箱的数目为N。这装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦。求电动机的平均抽出功率。

9.(22分)参考解答:

以地面为参考系(下同),设传送带的运动速度为v0,在水平段运输的过程中,小货箱先在滑动摩擦力作用下做匀加速运动,设这段路程为s,所用时间为t,加速度为a,则对小箱有 s=1/2at2 ① v0=at ②

在这段时间内,传送带运动的路程为s0=v0t ③

由以上可得s0=2s ④

用f表示小箱与传送带之间的滑动摩擦力,则传送带对小箱做功为

A=fs=1/2mv02 ⑤

传送带克服小箱对它的摩擦力做功A0=fs0=2·1/2mv02 ⑥

两者之差就是克服摩擦力做功发出的热量Q=1/2mv02 ⑦

可见,在小箱加速运动过程中,小箱获得的动能与发热量相等。

T时间内,电动机输出的功为W=T ⑧

此功用于增加小箱的动能、势能以及克服摩擦力发热,即

W=1/2Nmv02+Nmgh+NQ ⑨

已知相邻两小箱的距离为L,所以v0T=NL ⑩

联立⑦⑧⑨⑩,得:=[+gh]

10.(14分)为研究静电除尘,有人设计了一个盒状容器,容器侧面是绝缘的透明有机玻璃,它的上下底面是面积A=0.04m2的金属板,间距L=0.05m,当连接到U=2500V的高压电源正负两极时,能在两金属板间产生一个匀强电场,如图所示。现把一定量均匀分布的烟尘颗粒密闭在容器内,每立方米有烟尘颗粒1013个,假设这些颗粒都处于静止状态,每个颗粒带电量为q=+1.0×10-17C,质量为m=2.0×10-15kg,不考虑烟尘颗粒之间的相互作用和空气阻力,并忽略烟尘颗粒所受重力。求合上电键后:⑴经过多长时间烟尘颗粒可以被全部吸附?⑵除尘过程中电场对烟尘颗粒共做了多少功?⑶经过多长时间容器中烟尘颗粒的总动能达到最大?

[⑴当最靠近上表面的烟尘颗粒被吸附到下板时,烟尘就被全部吸附。烟尘颗粒受到的电场力F=qU/L,L=at2/2=qUt2/2mL,故t=0.02s

⑵W=NALqU/2=2.5×10-4J

⑶设烟尘颗粒下落距离为x,则当时所有烟尘颗粒的总动能

EK=NA(L-x)?mv2/2= NA(L-x)? qUx/L,当x=L/2时EK达最大,而x=at12/2,故t1=0.014s ]

11.(12分)风洞实验室中可以产生水平方向的、大小可调节的风力,现将一套有小球的细直杆放入风洞实验室,小球孔径略大于细杆直径。

(1)当杆在水平方向上固定时,调节风力的大小,使小球在杆上作匀速运动,这时小班干部所受的风力为小球所受重力的0.5倍,求小球与杆间的滑动摩擦因数。

(2)保持小球所受风力不变,使杆与水平方向间夹角为37°并固定,则小球从静止出发在细杆上滑下距离S所需时间为多少?(sin37°=0.6,cos37°=0.8)

13.(1)设小球所受的风力为F,小球质量为

○1 ○2

(2)设杆对小球的支持力为N,摩擦力为

沿杆方向○3

垂直于杆方向○4

○5

可解得○6

○7 ○8

评分标准:(1)3分。正确得出○2式,得3分。仅写出○1式,得1分。

(2)9分,正确得出○6式,得6分,仅写出○3、○4式,各得2分,仅写出○5式,得1分,正确得出○8式,得3分,仅写出○7式,得2分,g用数值代入的不扣分。

 ?

高一的物理题,高考题————力的分解,谢谢哦

没有想到我出去没有时间解决,这些问题还是没有得到结果。

我来解决。

1、要碰撞,必须在甲球上升到最高点时,乙球刚好也到这点。

若设甲球初始速度为V,则其上升到最高点的时间为V/g,距离为根号下V^2/2g

此时乙球运动的时间也为V/g,距离为(1/2)g(V/g)^2

则有V^2/2g+(1/2)g(V/g)^2=h,解得V=根号下gh ,故答案为C。

2、时刻对于计算来说是没有意义的,但时刻差有意义。

假设该球运动到X1的位移为S1,从开始到运动到此列出运动矢量方程有:S1=v0T+0.5gT^2

很明显,以上方程有两个解,T1,T2,对应的一个解就是t1时刻,另一个解就是t4时刻,根据韦达定理有:

T1+T2=-2V0/g,T1T2=-2S1/g

这些对解题还是没有意义,但T1-T2就有意义了,因为它对应就是

t4-t1。

所以(t4-t1)^2=T1-T2=(T1+T2)^2-4T1T2=4V0^2/g^2+8S1/g

同理对第二个过程有(t3-t2)^2=4V0^2/g^2+8S2/g

以上两式相减得:(t3-t2)^2-(t4-t1)^2=8(S2-S1)/g

因为S2-S1=X2-X1

所以:(t3-t2)^2-(t4-t1)^2=8(X2-X1)/g

即g=8(X2-X1)/[(t3-t2)^2-(t4-t1)^2]

解毕!

一道1999年广东物理高考题(关于牛顿第三定律的应用)

长度相等,均匀受力,设绳长L,绳与垂直方向夹角θ:

sinθ=(S/2)/L=S/(2L)

cosθ=根号[1-(sinθ)^2]=根号[1-S^2/(2L)^2]

2T1cosθ=mg

T1=mg/(2cosθ)≤T,所以:

cosθ≥mg/(2T)

根号[1-S^2/(2L)^2]≥mg/(2T),两边平方得:

1-S^2/(2L)^2≥(mg)^2/(2T)^2

S^2/(2L)^2≤1-(mg)^2/(2T)^2=[4T^2-(mg)^2]/(2T)^2

(2L)^2≥S^2/{[4T^2-(mg)^2]/(2T)^2}=(2TS)^2/[4T^2-(mg)^2]

L≥TS/根号[4T^2-(mg)^2]

补充:其实你那样列出的式子算出来结果也是一样的(不过你这种解法看不出L是最大允许还是最小允许值来。不像上面那样明确是最小值):

L/T=(S/2)/根号下T的平方-(mg/2)的平方

L=(TS/2)/根号[T^2-(mg/2)^2]

L=TS/根号[4T^2-(mg)^2]

2011江苏物理高考卷第九题求解.

答:在线段之前的那段距离就不用说了,直接等于s;

先看看A和B的受力情况,A的质量为4m,B为m,

线断之前把A、B看成一个整体(因为有绳子连着,所以二者的速度和加速度一样),

A沿着线面向下的重力分力为F1=4mg*sin30°=2mg,

B的重力为F2=mg,

二者产生加速度的力为:F=F1-F2=mg;

由牛二定律:F=ma得到二者的加速度:a=mg/(4mg+mg)=0.2;

又由二者滑动的距离:s=1/2at?得到:滑动s所需时间:t0=√10s/g;

根据v=at可得:线断的瞬间,二者的速度(这时二者速度是一样的):v=1/5g*√10s/g=√2gs/5

接下来就简单了吧,

计算B在纯重力作用下作匀减速运动,首先,速度减为0所需时间:

由v=gt得:t=v/g=√2s/5g;

根据时间计算上升的高度:h=1/2*g*t?=1/2*g*2s/5g=1/5*s=0.2s;

加上之前的s得到B上升的最大高度:H=s+h=1.2s.

物理题,帮忙!

本题的关键是“轻质绸带”。

第1步分析:因绸带是轻质模型,质量可视为零,故无论如何运动,所受合力为零,即受力平衡,而题中绸带在斜面上所受三力,一是斜面向上支撑的弹力,另二个为二侧的摩擦力,因平衡,故二侧摩擦力必定相等。故选项A正确。

第2步分析:是否会出现M相对绸带滑动呢?结论是也不会。因一旦滑动,则绸带左侧所受摩擦力即为与M之间的滑动摩擦力,将会比绸带右侧所受摩擦力大,绸带无法平衡,故选项C正确。

第3步分析:是否会出现二物体一起相对斜面静止,结论是不会。因静平衡时二物体皆需与自身下滑力(重力沿斜面向下的分力)平衡,而二物下滑力不同,致二摩擦力不同,与选项A矛盾。

第4步分析:是否会出现二物体皆向下运动,即M向左侧运动,m向右侧运动,结论是也不会。因一旦这样运动,绸带二侧皆受滑动摩擦力,而两边的滑动摩擦力不同,也与选项A矛盾。

第5步分析:综合第3、4分析可知,只有这样的运动是可能的。M向左侧运动(与绸带无相对滑动,为静摩擦力),m或静止在斜面上(与绸带间有滑动)或向上运动(与绸带间有滑动)或与绸带一起向上运动(与绸带间有静摩擦力),此类运动情境可致绸带二侧所受摩擦力相等。

即二物块是可能相对绸带静止的(三者一起运动),故选项B错误。

即m是可能相对斜面向上运动的(说“可能”是因为也可能相对斜面静止),故选项D错误。

以上解答由苏州蓝缨张海明提供。

回答时间:2011-07-04 21:57:35

高二物理常考类型题目

电磁感应中导体棒类问题归类剖析

万洪禄

电磁感应中的导轨上的导体棒问题是历年高考的热点。其频考的原因,是因为该类问题是力学和电学的综合问题,通过它可以考查考生综合运用知识的能力。解滑轨上导体棒的运动问题,首先要挖掘出导体棒的稳定条件及它最后能达到的稳定状态,然后才能利用相关知识和稳定条件列方程求解。下文是常见导轨上的导体棒问题的分类及结合典型例题的剖析。想必你阅过全文,你会对滑轨上的导体棒运动问题,有一个全面的细致的了解,能迅速分析出稳定状态,挖掘出稳定条件,能准确的判断求解所运用的方法。

一、滑轨上只有一个导体棒的问题

滑轨上只有一个导体棒的问题,分两类情况:一种是含电源闭合电路的导体棒问题,另一种是闭合电路中的导体棒在安培力之外的力作用下的问题。

(一)含电源闭合电路的导体棒问题

例1 如图1所示,水平放置的光滑导轨MN、PQ上放有长为L、电阻为R、质量为m的金属棒ab,导轨左端接有内阻不计、电动势为E的电源组成回路,整个装置放在竖直向上的匀强磁场B中,导轨电阻不计且足够长,并与电键S串联。当闭合电键后,求金属棒可达到的最大速度。

图1

解析 闭合电键后,金属棒在安培力的作用下向右运动。当金属棒的速度为v时,产生的感应电动势,它与电源电动势为反接,从而导致电路中电流减小,安培力减小,金属棒的加速度减小,即金属棒做的是一个加速度越来越小的加速运动。但当加速度为零时,导体棒的速度达到最大值,金属棒产生的电动势与电源电动势大小相等,回路中电流为零,此后导体棒将以这个最大的速度做匀速运动。

金属板速度最大时,有

解得

点评 本题的稳定状态是金属棒最后的匀速运动;稳定条件是金属棒的加速度为零(安培力为零,棒产生的感应电动势与电源电动势大小相等)

(二)闭合电路中的导体棒在安培力之外的力作用下的问题

1. 导体棒在外力作用下从静止运动问题

例2(全国高考题)如图2,光滑导体棒bc固定在竖直放置的足够长的平行金属导轨上,构成框架abcd,其中bc棒电阻为R,其余电阻不计。一质量为m且不计电阻的导体棒ef水平放置在框架上,且始终保持良好接触,能无摩擦地滑动。整个装置处在磁感应强度为B的匀强磁场中,磁场方向垂直框面。若用恒力F向上拉ef,则当ef匀速上升时,速度多大?

图2

解析 本题有两种解法。方法一:力的观点。当棒向上运动时,棒ef受力如图3所示。当ef棒向上运动的速度变大时,ef棒产生的感应电动势变大,感应电流I=E/R变大,它受到的向下的安培力F安=BIL变大,因拉力F和重力mg都不变,故加速度 变小。因此,棒ef做加速度越来越小的变加速运动。当a=0时(稳定条件),棒达到最大速度,此后棒做匀速运动(达到稳定状态)。当棒匀速运动时(设速度为 ),由物体的平衡条件有

图3

点评 应用力学观点解导体棒问题的程度:(a)分析棒的受力情况,判断各力的变化情况;(b)分析棒的运动情况,判断加速度和速度的变化情况;(c)分析棒的最终运动情况,依平衡条件或牛顿第二定律列方程。

方法二:能量观点。

当导体棒ef以最大速度匀速运动以后,拉力做功消耗的能量 等于棒重力势能的增加△ 和bc部分产生的热量Q之和。设棒匀速运动的时间为t,则有

点评 ①ef棒的运动尽管在达到最大速度以前为变速运动,产生的感应电流及感应电动势都在变化,但达到最大速度以后,感应电流及感应电动势均恒定,故计算热量可以用 计算。②求导体棒的最大速度问题,要会抓住速度最大之后速度不变这一关键条件,运用能量观点处理,往往会使运算过程简洁。③求导体棒的最大速度问题,可以运用力的观点和能量观点的任一种,但两种方法所研究的运动过程却不同。力观点研究分析的是棒达到最大速度为止的以前的运动过程,而能量观点研究的是从棒达到最大速度开始以后做匀速运动的一段过程。要注意这两种观点所研究运动过程的不同。

2. 外力作用下有初速问题

例3 如图4所示,匀强磁场竖直向上穿过水平放置的金属框架,框架宽为L,右端接有电阻为R,磁感应强度为B,一根质量为m、电阻不计的金属棒受到外力冲量后,以 的初速度沿框架向左运动,棒与框架的动摩擦因数为 ,测得棒在整个运动过程中,通过任一截面的电量为q,求:(1)棒能运动的距离?(2)R上产生的热量?

解析 (1)在整个过程中,棒运动的距离为S,磁通量的变化

通过棒的任一截面的电量

解得

(2)根据能的转化和守恒定律,金属棒的动能的一部分克服摩擦力做功,一部分转化为电能,电能又转化为热能Q,即有

点评 本题的棒与框架无论有无摩擦,棒的最终状态是静止。不过,无摩擦时,原来棒的动能全部要转变成R上产生的热量。

二、滑轨上有两个导体棒的运动问题

滑轨上有两个导体棒的运动问题,还分为两种:一种是初速度不为零,无安培力之外的力作用下的问题,另一种是初速度为零,有安培力之外的力作用下的问题。

(一)初速度不为零,无安培力之外的力作用的问题

1. 两棒各以不同的初速度做匀速运动问题

例4 如图5所示,相距d的平行光滑金属长导轨固定在同一水平面上处于竖直的匀强磁场中,磁场的磁感应强度为B,导轨上面横放着两条金属细杆ab、cd构成矩形回路,每条金属细杆的电阻为R,回路中其余部分的电阻可忽略不计。已知ab、cd分别以2v、v的速度向右匀速运动,求两金属细杆运动t秒后,共产生多少热量?

解析 以整个回路为研究对象,t秒后

磁通量的变化

回路中的感应电动势

回路中的感应电流

产生的热量

点评 本题的关键,是把两杆及导轨构成的回路作为研究对象,利用法拉第电磁感应定律求电动势E。如果用E=BLv求每杆的电动势,再求回路总电动势,那就要涉及到中学阶段不要求的反电动势问题。

2. 两棒之一有初速度的运动问题

例5 在例4中,两棒的质量均为m。若开始用一水平冲击力使ab获得一冲量I,使其沿轨道向右运动,而cd无初速度。求ab棒在整个过程中产生的焦耳热?

解析 ab棒获得速度 ,就开始向右切割磁感线,产生感应电流,从而ab棒在磁场力作用下做减速运动,cd棒做加速运动,当两棒速度相等时,两棒产生的感应电动势大小相等,在回路中方向相反,感应电流为零,磁场力也为零。此后两棒以相同的速度v做匀速运动(达到稳定状态)。在这个过程中,两棒组成的系统所受外力之和为零,系统动量守恒,有v= 。

在上述过程中,系统损失的动能先转化为电能,电流通过电阻后又转化为焦耳热。又因为两棒电阻相同,产生的焦耳热相等,故有

故ab棒在整个过程中产生的焦耳热

(二)初速度为零,有安培力之外的力作用下的问题

1. 初速度为零,有安培力之外的恒力作用下的问题

例6(03年高考理综卷)两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。导轨间的距离L=0.20m。两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为 。在t=0时刻,两杆都处于静止状态。现有一与导轨平行、大小为0.20N的恒力F作用于金属杆上,使金属杆在导轨上滑动。

(1)若经过t=5.0s,金属杆甲的加速度为 ,问此时两金属杆的速度各为多少?

(2)若经过10s,电路中的电功率达到最大值。问第10s末,

①金属杆甲的加速度是多少?

②两金属杆的速度各是多少?

解析 (1)设任一时刻t两金属杆甲、乙之间的距离为x,速度分别为 ,经过很短的时间△t,杆甲移动距离 ,杆乙移动距离 ,回路面积改变

由法拉第电磁感应定律,回路中的感应电动势

由闭合电路欧姆定律,回路中电流

对甲由牛顿第二定律,有 ④

由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量(t=0时为0)等于外力F的冲量

联立以上各式解得

代入数据得

(2)①根据法拉第电磁感应定律可知,甲、乙两杆的速度差越大,感应电动势越大。开始阶段,甲杆的加速度大于乙杆的加速度,甲杆的速度比乙杆的速度增加得快,因而速度差不断增大,直到两杆加速度相等,即 (稳定条件)时,两杆达到稳定状态均做加速度相同的匀加速运动,此时 达到最大值,从而E、I最大,电路中的电功率 达最大。

由于

解得

由牛顿第二定律,金属杆乙的加速度

金属杆甲的加速度

②流过金属杆的电流

回路中的感应电动势

由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量(t=0时为0)等于外力F的冲量

联立以上两式解得

点评 本题必须先根据楞次定律,正确判出甲在F作用下运动时,乙也在其后同向运动。

2. 有安培力之外的变力作用下的运动问题

例7(2004年广东高考)如图7,在水平面上有两条导电导轨MN、PQ,导轨间距为L,匀强磁场垂直于导轨所在的平面(纸面)向里,磁感应强度的大小为B。两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为 。两杆与导轨接触良好,与导轨间的动摩擦因数皆为 。已知:杆1被外力拖动,以恒定的速度沿导轨运动;达到稳定状态时,杆2也以恒定速度沿导轨运动。导轨的电阻可忽略。求此时杆2克服摩擦力做功的功率。

解析 设杆2的运动速度为v,由于两杆运动时,两杆和导轨构成的回路中的磁通量发生变化,产生感应电动势

感应电流 ②

杆2做匀速运动,它受到的安培力等于它受到的摩擦力

导体杆2克服摩擦力做功的功率

联立①②③④式得

总之,通过以上的分析,可以看出:对导轨上的单导体棒问题,其稳定状态就是导体棒最后达到的匀速运动状态。稳定条件是导体棒的加速度为零。对导轨上的双导体棒运动问题,在无安培力之外的力作用下的运动情况,其稳定状态是两棒最后达到的匀速运动状态,稳定条件是两棒的速度相同;在有安培力之外的恒力作用下的运动情况,其稳定状态是两棒最后达到的匀变速运动状态,稳定条件是两棒的加速度相同,速度差恒定。

高考的一道物理题

世上只有自己最了解自己,学习上也一样。根据自己的物理学习经历,分析自己的水平,确定自己在物理学科方向上的奋斗目标,下面我给大家分享一些 高二物理 常考类型题目,希望能够帮助大家,欢迎阅读!

高二物理常考类型题目

1、直线运动问题

题型概述:直线运动问题是高考的 热点 ,可以单独考查,也可以与其他知识综合考查.单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题.

思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系.?

2、物体的动态平衡问题

题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题.物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的 方法 推广到四个力作用下的动态平衡问题.

思维模板:常用的思维方法有两种.(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化.

3、运动的合成与分解问题

题型概述:运动的合成与分解问题常见的模型有两类.一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.

思维模板:(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析.

4、抛体运动问题

题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上.

思维模板:(1)平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满足x=v0t,y=gt2/2,速度满足vx=v0,vy=gt;(2)斜抛运动物体在竖直方向上做上抛(或下抛)运动,在水平方向做匀速直线运动,在两个方向上分别列相应的运动方程求解

5、圆周运动问题

题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速圆周运动.水平面内的圆周运动多为匀速圆周运动,竖直面内的圆周运动一般为变速圆周运动.对水平面内的圆周运动重在考查向心力的供求关系及临界问题,而竖直面内的圆周运动则重在考查最高点的受力情况.

思维模板:

(1)对圆周运动,应先分析物体是否做匀速圆周运动,若是,则物体所受的合外力等于向心力,由F合=mv2/r=mrω2列方程求解即可;若物体的运动不是匀速圆周运动,则应将物体所受的力进行正交分解,物体在指向圆心方向上的合力等于向心力.

(2)竖直面内的圆周运动可以分为三个模型:①绳模型:只能对物体提供指向圆心的弹力,能通过最高点的临界态为重力等于向心力;②杆模型:可以提供指向圆心或背离圆心的力,能通过最高点的临界态是速度为零;③外轨模型:只能提供背离圆心方向的力,物体在最高点时,若v<(gR)1/2,沿轨道做圆周运动,若v≥(gR)1/2,离开轨道做抛体运动.

6、牛顿运动定律的综合应用问题

题型概述:牛顿运动定律是高考重点考查的内容,每年在高考中都会出现,牛顿运动定律可将力学与运动学结合起来,与直线运动的综合应用问题常见的模型有连接体、传送带等,一般为多过程问题,也可以考查临界问题、周期性问题等内容,综合性较强.天体运动类题目是牛顿运动定律与万有引力定律及圆周运动的综合性题目,近几年来考查频率极高.

思维模板:以牛顿第二定律为桥梁,将力和运动联系起来,可以根据力来分析运动情况,也可以根据运动情况来分析力.对于多过程问题一般应根据物体的受力一步一步分析物体的运动情况,直到求出结果或找出规律.

对天体运动类问题,应紧抓两个公式:GMm/r2=mv2/r=mrω2=mr4π2/T2 ①。GMm/R2=mg ②.对于做圆周运动的星体(包括双星、三星系统),可根据公式①分析;对于变轨类问题,则应根据向心力的供求关系分析轨道的变化,再根据轨道的变化分析其他各物理量的变化.

7、机车的启动问题

题型概述:机车的启动方式常考查的有两种情况,一种是以恒定功率启动,一种是以恒定加速度启动,不管是哪一种启动方式,都是采用瞬时功率的公式P=Fv和牛顿第二定律的公式F-f=ma来分析.

思维模板:(1)机车以额定功率启动.机车的启动过程如图所示,由于功率P=Fv恒定,由公式P=Fv和F-f=ma知,随着速度v的增大,牵引力F必将减小,因此加速度a也必将减小,机车做加速度不断减小的加速运动,直到F=f,a=0,这时速度v达到最大值vm=P额定/F=P额定/f.

这种加速过程发动机做的功只能用W=Pt计算,不能用W=Fs计算(因为F为变力).

(2)机车以恒定加速度启动.恒定加速度启动过程实际包括两个过程.如图所示,“过程1”是匀加速过程,由于a恒定,所以F恒定,由公式P=Fv知,随着v的增大,P也将不断增大,直到P达到额定功率P额定,功率不能再增大了;“过程2”就保持额定功率运动.过程1以“功率P达到最大,加速度开始变化”为结束标志.过程2以“速度最大”为结束标志.过程1发动机做的功只能用W=F?s计算,不能用W=P?t计算(因为P为变功率).

8、以能量为核心的综合应用问题

题型概述:以能量为核心的综合应用问题一般分四类.第一类为单体机械能守恒问题,第二类为多体系统机械能守恒问题,第三类为单体动能定理问题,第四类为多体系统功能关系(能量守恒)问题.多体系统的组成模式:两个或多个叠放在一起的物体,用细线或轻杆等相连的两个或多个物体,直接接触的两个或多个物体.

思维模板:能量问题的解题工具一般有动能定理,能量守恒定律,机械能守恒定律.(1)动能定理使用方法简单,只要选定物体和过程,直接列出方程即可,动能定理适用于所有过程;(2)能量守恒定律同样适用于所有过程,分析时只要分析出哪些能量减少,哪些能量增加,根据减少的能量等于增加的能量列方程即可;(3)机械能守恒定律只是能量守恒定律的一种特殊形式,但在力学中也非常重要.很多题目都可以用两种甚至三种方法求解,可根据题目情况灵活选取.

高中物理备考方法

了解物理学科的出题特点

对于高中生来说物理考试试题还是以教材为基础回归教材,但是在做题的过程中又高于教材,在形式上有所创新,所以要求大家在备考的过程中注重对物理教材的学习,掌握书中知识点的含义,并且了解其出题方式,对物理教材中的例题都要做一遍,更加深层次的了解物理知识,对于不理解的地方要及时找老师或者同学帮忙解释清楚,在备考的时候不积压问题。近年来物理试题的出题特点都是比较关注热点,将物理知识和日常生活生产中的知识相结合,这就要求考生能够灵活应用知识点,并且在平时备考的时候能够对知识点的理解也要更加的灵活。

提高物理课上的效率

对于各位考生来说想要提高物理成绩,那么提高物理的备考效率是非常重要的,因为在物理的备考中提高上课效率是事半功倍的事情,对于各位考生来说如果上课的时候能够将知识点掌握百分之八-九十,那么课下的时候就会更加的容易了,在课上老师会用通俗的例子将复杂的知识点简单话,所以更加有利于大家理解,并且通过老师的讲解能够帮助考生规范整体的备考方向。

通过做物理试题查缺补漏

在做物理试题的过程中能够通过做题帮助各位考生查缺补漏,因为在做题的过程中能够将脑海中抽象的概念具体化,并且能够对知识点真正的应用,才能清楚了解自己是否真正的理解了对应知识点,对于不理解的地方要技术回归课本再次温习。

高二学好物理的方法有哪些

图象法

应用图象描述规律、解决问题是物理学中重要的手段之一.因图象中包含丰富的语言、解决问题时简明快捷等特点,在高考中得到充分体现,且比重不断加大。

涉及内容贯穿整个物理学.描述物理规律的最常用方法有公式法和图象法,所以在解决此类问题时要善于将公式与图象合一相长。

对称法

利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快速简便地求解问题。像课本中伽利略认为圆周运动最美(对称)为牛顿得到万有引力定律奠定基础。

估算法

有些物理问题本身的结果,并不一定需要有一个很准确的答案,但是,往往需要我们对事物有一个预测的估计值.像卢瑟福利用经典的粒子的散射实验根据功能原理估算出原子核的半径。

采用“估算”的方法能忽略次要因素,抓住问题的主要本质,充分应用物理知识进行快速数量级的计算。

微元法

在研究某些物理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解.像课本中提到利用计算摩擦变力做功、导出电流强度的微观表达式等都属于利用微元思想的应用。

整体法

整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合作为一个融洽加以研究的思维形式。

高二物理常考类型题目相关 文章 :

★ 高二物理常考的类型

★ 高中物理的10中题目类型与提高解题速度的方法

★ 高二物理上学期期末考试试题

★ 高二上学期物理期末考试复习题

★ 高二物理考试选择题和应用题技巧

★ 高中物理常见模型归纳

★ 高二物理高效做题的六种方法

★ 高二物理上册期末考试试卷试题

★ 高二物理习题及参考答案

★ 高中物理知识考点整理

静电平衡概念:导体中(包括表面)没有电荷定向移动的状态叫做静电平衡状态。

处于静电平衡状态的导体,内部场强处处为0

导体的特点是它具有可以自由移动的电荷,这些自由电荷在电场中受力后会做定向运动,而“静电平衡”指的是导体中的自由电荷所受的力达到平衡而不再做定向运动的状态。

静电平衡内部电场的特点:处于静电平衡状态得导体其合场强为零。

处于静电平衡状态的整个导体是个等势体,它的表面是个等势面。地球是一个极大的导体,可以认为处于静电平衡状态,所以它是一个等势体。

静电平衡的情况

1导体处于外电场的情形。无论导体是否带电,一旦其处于外电场中,在外电场E的作用下,导体内的自由电子受到电场力的作用,将向着电场的反方向做定向移动,因而产生的感应电荷所附加的感应电场E 0与外电场E相反,E 0阻碍导体内的自由电子的定向移动。只要E>E 0,电子仍将定向移动,直到E=E 0,导体中的自由电荷才会停止定向移动;此时E=E 0,且方向相反,即合场强为零,没有电荷定向移动,即达到了静电平衡状态。但值得注意的是静电平衡只是宏观上停止了定向移动,导体内部的电荷仍在做无规则的热运动,只是静电平衡时电荷只分布在导体表面,表面为等电势且内部电场强度是稳定为零。

2.孤立带电导体。在没有外电场中的带电导体平衡时,同样其内部各点的场强E一定为零,否则只要导体中的电场不为零,导体中的电荷就会发生定向移动,这样就意味着导体未达到静电平衡状态。

静电平衡时,导体上的电荷分布有以下两个特点:

1.导体内部没有电荷,电荷只分布在导体的外表面。

2.在导体表面,越尖锐的地方,电荷的密度(单位面积的电荷量)越大,凹陷的位置几乎没有电荷。

由以上理论可知:实心小球是规则的均匀的,所以表面电荷分布时,它处于静电平衡状态。

文章标签: # 运动 # 速度 # 问题