您现在的位置是: 首页 > 教育政策 教育政策

高考化学经典例题_高考化学现象

tamoadmin 2024-08-02 人已围观

简介1.高考化学问题92.高考化学各题型的答题技巧有哪些?3.高中化学简单的问题!!!4.高考化学实验常常会提到"基于设1进行实验探究",有些题目就直接认为其是正确的,因而在实验现象和结论中的5.高考化学推断题常见物质及关系6.高中化学都学什么内容?化学是研究物质的性质、组成、结构、变化和应用的科学。世界是由物质组成的,化学则是人类用以认识和改造物质世界的主要方法和手段之一,它是一门历史悠久而又富有活

1.高考化学问题9

2.高考化学各题型的答题技巧有哪些?

3.高中化学简单的问题!!!

4.高考化学实验常常会提到"基于设1进行实验探究",有些题目就直接认为其是正确的,因而在实验现象和结论中的

5.高考化学推断题常见物质及关系

6.高中化学都学什么内容?

高考化学经典例题_高考化学现象

化学是研究物质的性质、组成、结构、变化和应用的科学。世界是由物质组成的,化学则是人类用以认识和改造物质世界的主要方法和手段之一,它是一门历史悠久而又富有活力的学科,它的成就是社会文明的重要标志。

化学是研究物质的性质、组成、结构、变化和应用的科学。世界是由物质组成的,化学则是人类用以认识和改造物质世界的主要方法和手段之一,它是一门历史悠久而又富有活力的学科,它的成就是社会文明的重要标志。从开始用火的原始社会,到使用各种人造物质的现代社会,人类都在享用化学成果。人类的生活能够不断提高和改善,化学的贡献在其中起了重要的作用。

化学是重要的基础科学之一,在与物理学、生物学、自然地理学天文学等学科的相互渗透中,得到了迅速的发展,也推动了其他学科和技术的发展。例如,核酸化学的研究成果使今天的生物学从细胞水平提高到分子水平,建立了分子生物学;对地球、月球和其他星体的化学成分的分析,得出了元素分布的规律,发现了星际空间有简单化和物的存在,为天体演化和现代宇宙学提供了实验数据,还丰富了自然辩证法的内容。

化学的萌芽

原始人类从用火之时开始,由野蛮进入文明,同时也就开始了用化学方法认识和改造天然物质。燃烧就是一种化学现象。掌握了火以后,人类开始熟食;逐步学会了制陶、冶炼;以后又懂得了酿造、染色等等。这些有天然物质加工改造而成的制品,成为古代文明的标志。在这些生产实践的基础上,萌发了古代化学知识。

古人曾根据物质的某些性质对物质进行分类,并企图追溯其本原及其变化规律。公元前4世纪或更早,中国提出了阴阳五行学说,认为万物是由金、木、水、火、土五种基本物质组合而成的,而五行则是由阴阳二气相互作用而成的。此说法是朴素的唯物主义自然观,用“阴阳”这个概念来解释自然界两种对立和相互消长的物质势力,认为二者的相互作用是一切自然现象变化的根源。此说为中国炼丹术的理论基础之一。

公元前4世纪,希腊也提出了与五行学说类似的火、风、土、水四元素说和古代原子论。这些朴素的元素思想,即为物质结构及其变化理论的萌芽。后来在中国出现了炼丹术,到了公元前2世纪的秦汉时代,炼丹术以颇为盛行,大致在公元7世纪传到阿拉伯国家,与古希腊哲学相融合而形成阿拉伯炼丹术,阿拉伯炼金术与中世纪传入欧洲,形成欧洲炼金术,后逐步演进为近代的化学。

炼丹术的指导思想是深信物质能转化,试图在炼丹炉中人工合成金银或修炼长生不老之药。他们有目的的将各类物质搭配烧炼,进行实验。为此涉及了研究物质变化用的各类器皿,如升华器、蒸馏器、研钵等,也创造了各种实验方法,如研磨、混合、溶解、洁净、灼烧、熔融、升华、密封等。

与此同时,进一步分类研究了各种物质的性质,特别是相互反应的性能。这些都为近代化学的产生奠定了基础,许多器具和方法经过改进后,仍然在今天的化学实验中沿用。炼丹家在实验过程中发明了火药,发现了若干元素,制成了某些合金,还制出和提纯了许多化合物,这些成果我们至今仍在利用。

化学的中兴

16世纪开始,欧洲工业生产蓬勃兴起,推动了医药化学和冶金化学的创立和发展,使炼金术转向生活和实际应用,继而更加注意物质化学变化本身的研究。在元素的科学概念建立后,通过对燃烧现象的精密实验研究,建立了科学的氧化理论和质量守恒定律,随后又建立了定比定律、倍比定律和化合量定律,为化学进一步科学的发展奠定了基础。

19世纪初,建立了近代原子论,突出地强调了各种元素的原子的质量为其最基本的特征,其中量的概念的引入,是与古代原子论的一个主要区别。近代原子论使当时的化学知识和理论得到了合理的解释,成为说明化学现象的统一理论。分子说提出了,建立了原子分子学说,为物质结构的研究奠定了基础。门捷列夫发现元素周期律后,不仅初步形成了无机化学的体系,并且与原子分子学说一起形成化学理论体系。

通过对矿物的分析,发现了许多新元素,加上对原子分子学说的实验验证,经典性的化学分析方法也有了自己的体系。草酸和尿素的合成、原子价概念的产生、苯的六环结构和碳价键四面体等学说的创立、酒石酸拆分成旋光异构体,以及分子的不对称性等等的发现,导致有机化学结构理论的建立,使人们对分子本质的认识更加深入,并奠定了有机化学的基础。

19世纪下半叶,热力学等物理学理论以入化学之后,不仅澄清了化学平衡和反应速率的概念,而且可以定量地判断化学反应中物质转化的方向和条件。相继建立了溶液理论、电离理论、电化学和化学动力学的理论基础。物理化学的诞生,把化学从理论上提高到一个新的水平。

二十世纪的化学化学是一门建立在实验基础上的科学,实验与理论一直是化学研究中相互依赖、彼此促进的两个方面。进入20世纪以后,由于受到自然科学其他学科发展的影响,并广泛地应用了当代科学的理论、技术和方法,化学在认识物质的组成、结构、合成和测试等方面都有了长足的进展,而且在理论方面取得了许多重要成果。在无机化学、分析化学、有机化学和物理化学四大分支学科的基础上产生了新的化学分支学科。

近代物理的理论和技术、数学方法及计算机技术在化学中的应用,对现代化学的发展起了很大的推动作用。19世纪末,电子、X射现和放射性的发现为化学在20世纪的重大进展创造了条件。

在结构化学方面,由于电子的发现开始并确立的现代的有核原子模型,不仅丰富和深化了对元素周期表的认识,而且发展了分子理论。应用量子力学研究分子结构,产生了量子化学。

从氢分子结构的研究开始,逐步揭示了化学键的本质,先后创立了价键理论、分子轨道理论和佩位场理论。化学反应理论也随着深入到微观境界。应用X射现作为研究物质结构的新分析手段,可以洞察物质的晶体化学结构。测定化学立体结构的衍射方法,有X射线衍射、电子衍射和中子衍射等方法。其中以X射线衍射法的应用所积累的精密分子立体结构信息最多。

研究物质结构的谱学方法也由可见光谱、紫外光谱、红外光谱扩展到核磁共振谱、电子自选共振谱、光电子能谱、射线共振光谱、穆斯堡尔谱等,与计算机联用后,积累大量物质结构与性能相关的资料,正由经验向理论发展。电子显微镜放大倍数不断提高,人们以可直接观察分子的结构。

经典的元素学说由于放射性的发现而产生深刻的变革。从放射性衰变理论的创立、同位素的发现到人工核反应和核裂变的实现、氘的发现、中子和正电子及其它基本粒子的发现,不仅是人类的认识深入到亚原子层次,而且创立了相应的实验方法和理论;不仅实现了古代炼丹家转变元素的思想,而且改变了人的宇宙观。

作为20世纪的时代标志,人类开始掌握和使用核能。放射化学和核化学等分支学科相继产生,并迅速发展;同位素地质学、同位素宇宙化学等交叉学科接踵诞生。元素周期表扩充了,以有109号元素,并且正在探索超重元素以验证元素“稳定岛说”。与现代宇宙学相依存的元素起源学说和与演化学说密切相关的核素年龄测定等工作,都在不断补充和更新元素的观念。

在化学反应理论方面,由于对分子结构和化学键的认识的提高,经典的、统计的反应理论以进一步深化,在过渡态理论建立后,逐渐向微观的反应理论发展,用分子轨道理论研究微观的反应机理,并逐渐建立了分子轨道对称守恒定律和前线轨道理论。分子束、激光和等离子技术的应用,使得对不稳定化学物种的检测和研究成为现实,从而化学动力学已有可能从经典的、统计的宏观动力学深入到单个分子或原子水平的微观反应动力学。

计算机技术的发展,使得分子、电子结构和化学反映的量子化学计算、化学统计、化学模式识别,以及大规模术技的处理和综合等方面,都得到较大的进展,有的已经逐步进入化学教育之中。关于催化作用的研究,以提出了各种模型和理论,从无机催化进入有机催化和僧物催化,开始从分子微观结构和尺寸的角度核生物物理有机化学的角度,来研究酶类的作用和酶类的结构与其功能的关系。

分析方法和手段是化学研究的基本方法和手段。一方面,经典的成分和组成分析方法仍在不断改进,分析灵敏度从常量发展到微量、超微量、痕量;另一方面,发展初许多新的分析方法,可深入到进行结构分析,构象测定,同位素测定,各种活泼中间体如自由基、离子基、卡宾、氮宾、卡拜等的直接测定,以及对短寿命亚稳态分子的检测等。分离技术也不断革新,离子交换、膜技术、色谱法等等。

合成各种物质,是化学研究的目的之一。在无机合成方面,首先合成的是氨。氨的合成不仅开创了无机合成工业,而且带动了催化化学,发展了化学热力学和反应动力学。后来相继合成的有红宝石、人造水晶、硼氢化合物、金刚石、半导体、超导材料和二茂铁等配位化合物。

在电子技术、核工业、航天技术等现代工业技术的推动下,各种超纯物质、新型化合物和特殊需要的材料的生产技术都得到了较展。稀有气体化合物的合成成功又向化学家提出了新的挑战,需要对零族元素的化学性质重新加以研究。无机化学在与有机化学、生物化学、物理化学等学科相互渗透中产生了有机金属化学、生物无机化学、无机固体化学等新兴学科。

酚醛树脂的合成,开辟了高分子科学领域。20世纪30年代聚酰胺纤维的合成,使高分子的概念得到广泛的确认。后来,高分子的合成、结构和性能研究、应用三方面保持互相配合和促进,使高分子化学得以迅速发展。

各种高分子材料合成和应用,为现代工农业、交通运输、医疗卫生、军事技术,以及人们衣食住行各方面,提供了多种性能优异而成本较低的重要材料,成为现代物质文明的重要标志。高分子工业发展为化学工业的重要支柱。

20世纪是有机合成的黄金时代。化学的分离手段和结构分析方法已经有了很展,许多天然有机化合物的结构问题纷纷获得圆满解决,还发现了许多新的重要的有机反应和专一性有机试剂,在此基础上,精细有机合成,特别是在不对称合成方面取得了很大进展。

一方面,合成了各种有特种结构和特种性能的有机化合物;另一方面,合成了从不稳定的自由基到有生物活性的蛋白质、核酸等生命基础物质。有机化学家还合成了有复杂结构的天然有机化合物和有特效的药物。这些成就对促进科学的发展起了巨大的作用;为合成有高度生物活性的物质,并与其他学科协同解决有生命物质的合成问题及解决前生命物质的化学问题等,提供了有利的条件。

20世纪以来,化学发展的趋势可以归纳为:有宏观向微观、有定性向定量、有稳定态向亚稳定态发展,由经验逐渐上升到理论,再用于指导设计和开创新的研究。一方面,为生产和技术部门提供尽可能多的新物质、新材料;另一方面,在与其它自然科学相互渗透的进程中不断产生新学科,并向探索生命科学和宇宙起源的方向发展。

化学的学科分类

化学在发展过程中,依照所研究的分子类别和研究手段、目的、任务的不同,派生出不同层次的许多分支。在20世纪20年代以前,化学传统地分为无机化学、有机化学、物理化学和分析化学四个分支。20年代以后,由于世界经济的高速发展,化学键的电子理论和量子力学的诞生、电子技术和计算机技术的兴起,化学研究在理论上和实验技术上都获得了新的手段,导致这门学科从30年代以来飞跃发展,出现了崭新的面貌。现在把化学内容一般分为生物化学、有机化学、高分子化学、应用化学和化学工程学、物理化学、无机化学等五大类共80项,实际包括了七大分支学科。

根据当今化学学科的发展以及它与天文学、物理学、数学、生物学、医学、地学等学科相互渗透的情况,化学可作如下分类:

无机化学:元素化学、无机合成化学、无机固体化学、配位化学、生物无机化学、有机金属化学等

有机化学:天有机化学、一般有机化学、有机合成化学、金属和非金属有机化学、物力有机化学、生物有机化学、有机分析化学。

物理化学:化学热力学、结构化学、化学动力学、分门物理化学。

分析化学:化学分析、仪器和新技术分析。

高分子化学:天然高分子化学、高分子合成化学、高分子物理化学、高聚物应用、高分子物力。

核化学核放射性化学:放射性元素化学、放射分析化学、辐射化学、同位素化学、核化学。

生物化学:一般生物化学、酶类、微生物化学、植物化学、免疫化学、发酵和生物工程、食品化学等。

其它与化学有关的边缘学科还有:地球化学、海洋化学、大气化学、环境化学、宇宙化学、星际化学等。

关于化学家:

不能简单地以他们的收入来衡量是否富有,做研究不同于普通上班赚钱的白领。你可能没有学到很深的化学吧~其实化学的领域很广。单从基础化学就有无机化学,有机化学,分析化学,物理化学这四门。后三者都是很难的学科(也许中学里会学到一些有机化学的东西,不过你看完大学里的有机化学书就知道有机是多么难)。没有一定的理科基础是不能轻易理解的。而更细分的话就更多类别可以研究了。象我本人是学药学的,除了上述四门课程以外,还需要学习药物化学,生物化学,生物有机化学,天然药物化学。而其他专业也有很多更细的化学课程需要学习。

至于你问化学家是研究什么的,象我上述提及的学科里面已经有很多可以研究的了。目前来讲,化学家的研究早已不是凭一己之力来完成,通常是一个庞大的团队来进行他们的课题研究。

研究的结果已经不是象我们做实验完毕以后提交的实验报告这么简单,而是以论文的形式发表到化学领域的杂志上。

而关于数学水平,你认为什么程度才是适合呢?你是否有看过高等数学的书?单从基础化学中的物理化学来讲,没有一定的高数知识,是根本看不明白的。如果只是单纯应付中学水平的化学考试,顶多初中水平,计算认真,一般来讲已经没有问题了。

=======================

关于化学的学习:

要学好化学首先要记住元素周期表。通常来说初中水平的话只要求记熟前20个元素就可以了。而高中的话就我们当时而言是要把全部主族元素都背熟的。当然窍门没有很多,只能说靠死记硬背吧。多念几次自然就记住了。元素符号可以按照英文字母的读法记就好,不必太拘泥,毕竟我们说某种元素的时候也是说它们的中文名字而已。

化学资料还是买一些适合自己程度的就好,太难的未必能懂,太简单的又没有意思。这要看个人的需要。

实验现象的描述,只需要描述你所看到的实验现象就可以了。例如锌粉放入盐酸里,你可以描述成“锌粉逐渐溶解,并且有气泡生成”。如果是有沉淀生成,就直接写生成某颜色的沉淀。如果是没有明显现象的反应,应该如实写出没有明显现象,不能硬作。总结起来,描述现象可以从反应物与生成物两方面来描述,一方面写出反应物的变化,如是否溶解,还有颜色变化,另一方面可以描述生成物,如状态(气体,沉淀),颜色,气味等。

历届诺贝尔化学奖得主:

1901年 J. H. 范特·霍夫(荷兰人)发现溶液中化学动力学法则和渗透压规律

1902年 E. H. 费雪(德国人)合成了糖类以及嘌噙诱导体

1903年 S . A . 阿伦纽斯(瑞典人)提出电解质溶液理论

1904年 W . 拉姆赛(英国人)发现空气中的惰性气体

1905年 A .冯·贝耶尔(德国人)

从事有机染料以及氢化芳香族化合物的研究

1906年 H . 莫瓦桑(法国人)从事氟元素的研究

1907年 E .毕希纳(德国人)从事酵素和酶化学、生物学研究

1908年 E. 卢瑟福(英国人)首先提出放射性元素的蜕变理论

1909年 W. 奥斯特瓦尔德(德国人)从事催化作用、化学平衡以及反应速度的研究

1910年 O. 瓦拉赫(德国人)

脂环式化合物的奠基人

1911年 M. 居里(法国人)发现镭和钋

1912年 V. 格林尼亚(法国人)发明了格林尼亚试剂 —— 有机镁试剂

P. 萨巴蒂(法国人)使用细金属粉末作催化剂,发明了一种制取氢化不饱和烃的有效方法

1913年 A. 维尔纳 (瑞士人)从事分子内原子化合价的研究

1914年 T.W. 理查兹(美国人)致力于原子量的研究,精确地测定了许多元素的原子量

1915年 R. 威尔斯泰特(德国人)从事植物色素(叶绿素)的研究

1916---1917年 未颁奖

1918年 F. 哈伯(德国人)发明固氮法

1919年 未颁奖

1920年 W.H. 能斯脱(德国人)从事电化学和热动力学方面的研究

1921年 F. 索迪(英国人)从事放射性物质的研究,首次命名“同位素”

1922年 F.W. 阿斯顿(英国人) 发现非放射性元素中的同位素并开发了质谱仪

1923年 F. 普雷格尔(奥地利人)创立了有机化合物的微量分析法

1924年 未颁奖

1925年 R.A. 席格蒙迪(德国人)从事胶体溶液的研究并确立了胶体化学

1926年 T. 斯韦德贝里(瑞典人)从事胶体化学中分散系统的研究

1927年 H.O. 维兰德(德国人)

研究确定了胆酸及多种同类物质的化学结构

1928年 A. 温道斯(德国人)研究出一族甾醇及其与维生素的关系

1929年 A. 哈登(英国人),冯·奥伊勒 – 歇尔平(瑞典人)阐明了糖发酵过程和酶的作用

1930年 H. 非舍尔(德国人)从事血红素和叶绿素的性质及结构方面的研究

1931年 C. 博施(德国人),F.贝吉乌斯(德国人)发明和开发了高压化学方法

1932年 I. 兰米尔 (美国人) 创立了表面化学

1933年 未颁奖

1934年 H.C. 尤里(美国人)发现重氢

1935年 J.F.J. 居里,I.J. 居里(法国人)发明了人工放射性元素

1936年 P.J.W. 德拜(美国人)提出分子磁耦极矩概念并且应用X射线衍射弄清分子结构

1937年 W. N. 霍沃斯(英国人) 从事碳水化合物和维生素C的结构研究

P. 卡雷(瑞士人) 从事类胡萝卜、核黄素以及维生素 A、B2的研究

1938年 R. 库恩(德国人) 从事类胡萝卜素以及维生素类的研究

1939年 A. 布泰南特(德国人)从事性激素的研究

L. 鲁齐卡(瑞士人) 从事萜、聚甲烯结构方面的研究

1940年—1942年 未颁奖

1943年 G. 海韦希(匈牙利人)利用放射性同位素示踪技术研究化学和物理变化过程

1944年 O. 哈恩(德国人) 发现重核裂变反应

1945年 A.I.魏尔塔南(芬兰人)研究农业化学和营养化学,发明了饲料贮藏保养鲜法

1946年 J. B. 萨姆纳(美国人) 首次分离提纯了酶

J. H. 诺思罗普,W. M. 斯坦利(美国人) 分离提纯酶和蛋白质

1947年 R. 鲁宾逊(英国人)从事生物碱的研究

1948年 A. W. K. 蒂塞留斯(瑞典人) 发现电泳技术和吸附色谱法

1949年 W.F. 吉奥克(美国人)

长期从事化学热力学的研究,物别是对超温状态下的物理反应的研究

1950年 O.P.H. 狄尔斯、K.阿尔德(德国人)发现狄尔斯 – 阿尔德反应及其应用

1951年 G.T. 西博格、E.M. 麦克米伦(美国人) 发现超铀元素

1952年 A.J.P. 马丁、R.L.M. 辛格(英国人)开发并应用了分配色谱法

1953年 H. 施陶丁格(德国人)从事环状高分子化合物的研究

1954年 L.C.鲍林(美国人)阐明化学结合的本性,解释了复杂的分子结构

1955年 V. 维格诺德 (美国人)

确定并合成了含硫的生物体物质(特别是后叶催产素和增压素)

1956年 C.N. 欣谢尔伍德(英国人)

N.N. 谢苗诺夫(俄国人)提出气相反应的化学动力学理论(特别是支链反应)

1957年 A.R. 托德(英国人)从事核酸酶以及核酸辅酶的研究

1958年 F. 桑格(英国人)从事胰岛素结构的研究

1959年 J. 海洛夫斯基(捷克人)提出极普学理论并发现“极普法”

1960年 W.F. 利时(美国人)发明了“放射性碳素年代测定法”

1961年 M. 卡尔文(美国人)

提示了植物光合作用机理

1962年 M.F. 佩鲁茨、J.C. 肯德鲁(英国人)

测定了蛋白质的精细结构

1963年 K. 齐格勒(德国人)、G. 纳塔(意大利人)

发现了利用新型催化剂进行聚合的方法,并从事这方面的基础研究

1964年 D.M.C. 霍金英(英国人)

使用X射线衍射技术测定复杂晶体和大分子的空间结构

1965年 R.B. 伍德沃德(美国人)

因对有机合成法的贡献

1966年 R.S. 马利肯(美国人)

用量子力学创立了化学结构分子轨道理论,阐明了分子的共价键本质和电子结构

1967年 R.G.W.诺里会、G. 波特(英国人)

M. 艾根(德国人)

发明了测定快速 化学反应的技术

1968年 L. 翁萨格(美国人)从事不可逆过程热力学的基础研究

1969年 O. 哈塞尔(挪威人)、K.H.R. 巴顿(英国人)

为发展立体化学理论作出贡献

10年 L.F. 莱洛伊尔(阿根廷人)发现糖核苷酸及其在糖合成过程中的作用

11年 G. 赫兹伯格(加拿大人)从事自由基的电子结构和几何学结构的研究

12年 C.B. 安芬森(美国人)确定了核糖核苷酸酶的活性区位研究

13年 E.O. 菲舍尔(德国人)、G. 威尔金森(英国人)从事具有多层结构的有机金属化合物的研究

14年 P.J. 弗洛里(美国人)从事高分子化学的理论、实验两方面的基础研究

15年 J.W. 康福思(澳大利亚人)研究酶催化反应的立体化学

V.普雷洛格(瑞士人)从事有机分子以及有机分子的立体化学研究

16年 W.N. 利普斯科姆(美国人)从事甲硼烷的结构研究

17年 I. 普里戈金(比利时人)主要研究非平衡热力学,提出了“耗散结构”理论

18年 P.D. 米切尔(英国人)从事生物膜上的能量转换研究

19年 H.C. 布朗(美国人)、G. 维蒂希(德国人)研制了新的有机合成法

1980年 P. 伯格(美国人)从事核酸的生物化学研究

W.吉尔伯特(美国人)、F. 桑格(英国人)确定了核酸的碱基排列顺序

1981年 福井谦一(日本人)、R. 霍夫曼(英国人) 确定了核酸的碱基排列顺序

1982年 A. 克卢格(英国人)开发了结晶学的电子衍射法,并从事核酸蛋白质复合体的立体结构的研究

1983年 H.陶布(美国人)阐明了金属配位化合物电子反应机理

年 R.B. 梅里菲尔德(美国人)开发了极简便的肽合成法

1985年 J.卡尔、H.A.豪普特曼(美国人)开发了应用X射线衍射确定物质晶体结构的直接计算法

1986年 D.R. 赫希巴奇、李远哲(人)、J.C.波利亚尼(加拿大人)研究化学反应体系在位能面运动过程的动力学

1987年 C.J.佩德森、D.J. 克拉姆(美国人)

J.M. 莱恩(法国人)合成冠醚化合物

1988年 J. 戴森霍弗、R. 胡伯尔、H. 米歇尔(德国人)分析了光合作用反应中心的三维结构

1989年 S. 奥尔特曼, T.R. 切赫(美国人)发现RNA自身具有酶的催化功能

1990年 E.J. 科里(美国人)创建了一种独特的有机合成理论——逆合成分析理论

1991年 R.R. 恩斯特(瑞士人)发明了傅里叶变换核磁共振分光法和二维核磁共振技术

1992年 R.A. 马库斯(美国人)对溶液中的电子转移反应理论作了贡献

1993年 K.B. 穆利斯(美国人)发明“聚合酶链式反应”法

M. 史密斯(加拿大人)开创“寡聚核苷酸基定点诱变”法

1994年 G.A. 欧拉(美国人)在碳氢化合物即烃类研究领域作出了杰出贡献

1995年 P.克鲁岑(德国人)、M. 莫利纳、F.S. 罗兰(美国人)

阐述了对臭氧层产生影响的化学机理,证明了人造化学物质对臭氧层构成破坏作用

1996年 R.F.柯尔(美国人)、H.W.克罗托因(英国人)、R.E.斯莫利(美国人)

发现了碳元素的新形式——富勒氏球(也称布基球)C60

19年 P.B.博耶(美国人)、J.E.沃克尔(英国人)、J.C.斯科(丹麦人)发现人体细胞内负责储藏转移能量的离子传输酶

1998年 W.科恩(奥地利)J.波普(英国)提出密度泛函理论

1999年 艾哈迈德-泽维尔(美籍埃及人)将毫微微秒光谱学应用于化学反应的转变状态研究

2000年 黑格(美国人)、麦克迪尔米德(美国人)、白川秀树(日本人)因发现能够导电的塑料有功

2001年 威廉·诺尔斯(美国人)、野依良治(日本人)

在“手性催化氢化反应”领域取得成就巴里·夏普莱斯(美国人)在“手性催化氧化反应”领域取得成就。

2002年 约翰-B-芬恩(美国人)、田中耕一(日本人)在生物高分子大规模光谱测定分析中发展了软解吸附作用电离方法。

库特-乌特里希(瑞士人)以核电磁共振光谱法确定了溶剂的生物高分子三维结构。

2003年 阿格里(美国人)和麦克农(美国人)研究细胞隔膜

2004年诺贝尔化学奖授予以色列科学家阿龙·切哈诺沃、阿夫拉姆·赫什科和美国科学家欧文·罗斯,以表彰他们发现了泛素调节的蛋白质降解。其实他们的成果就是发现了一种蛋白质“死亡”的重要机理。

2005年

三位获奖者分别是法国石油研究所的伊夫·肖万、美国加州理工学院的罗伯特·格拉布和麻省理工学院的理查德·施罗克。他们获奖的原因是在有机化学的烯烃复分解反应研究方面作出了贡献。烯烃复分解反应广泛用于生产药品和先进塑料等材料,使得生产效率更高,产品更稳定,而且产生的有害废物较少。瑞典科学院说,这是重要基础科学造福于人类、社会和环境的例证。

2006

美国科学家罗杰·科恩伯格因在“真核转录的分子基础”研究领域所作出的贡献而独自获得2006年诺贝尔化学奖

高考化学问题9

试题有方向,答题自然有规范。下面是我为您带来的,希望对大家有所帮助。

 一

一、审题要认真:

答题都是从审题开始的,审题时如果遗漏了题给资讯,或者不能正确理解资讯,就会给答题埋下隐患,使解题陷入困境,不但做不对题,还占用了考场上的宝贵时间,危害很大。细心的审题,正确理解和把握所给资讯,充分挖掘隐含资讯是正确解题的前提。

在化学学科的考试中,审题主要应该注意以下几个方面:

1.审题型:审题型是指要看清题目属于概念辨析型别的还是计算型别的,属于考查物质性质的,还是考查实验操作的等等。审清题目的型别对于解题是至关重要的,不同型别的题目处理的方法和思路不太一样,只有审清题目型别才能按照合理的解题思路处理。

2.审关键字:关键字往往是解题的切,也是解题的核心资讯。关键字可以在题干中,也可以在问题中,一个题干下的问题可能是连续的,也可能是独立的。常见化学题中的关键字有:“过量”、“少量”、“无色”、“酸性碱性”、“短周期”、“长时间”、“小心加热”、“加热并灼烧”等等。

3.审表达要求:题目往往对结果的表达有特定的要求。例如:写“分子式”、“结构简式”、“名称”、“化学方程式”、“离子方程式”、“现象”、“目的”,这些都应该引起足够的重视。养成良好的审题习惯,避免“所答非所问”,造成不必要的失分。

4.审突破口:常见的解题突破口有:特殊结构、特殊的化学性质、特殊的物理性质颜色、状态、气味、特殊反应形式、有催化剂参与的无机反应、应用资料的推断、框图推断中重复出现的物质等等。

5.审有效数字:有效数字的三个依据:①使用仪器的精确度如:托盘天平0. 1g、量筒大于或等于0. 1mL 、滴定管0.01mL. pH试纸整数等;②试题所给的资料处理,例如“称取样品4. 80 g------”,根据试题所给的有效数字进行合理的计算,最后要保留相应的有效数字;③题目的明确要求,例如:“结果保留两位有效数字”,就按照试题的要求去保留。

二、答题策略和答题技巧:

1.选择题:在理综试卷I卷中化学题有7个单选题。解答时在认真审题的基础上仔细考虑各个选项,合理用排除法、比较法、代入法、猜测法等方法,避免落入命题人所设的“陷阱”,迅速的找到所要选项。选择题的答题方法是多样化的,既能从题干出发做题,也能从选项出发验证题干作答,合理的选择解题方法快而准地找到答案,将做选择题的时间尽可能压缩到最短,为解决后面的大题腾出更多时间。

2.填空题答题策略和答题技巧:在理综试卷II卷大题中按照近几年情况来看,化学题是三道必考题加一道选考的填空题。必考三题一般来讲实验题一个、涉及化学反应原理的有两个题,分别侧重于化学平衡和电化学。选考一题选二化学与技术—主要是与理论或元素化合物与实验分离有关的一个、选三物质结构与性质—与周期表与周期律延伸的一题、选五有机推断一个。

对于填空题在答题时有些共性的要求。

1化学方程式的书写要完整无误。没配平、条件错、有机反应少写物质水等会造成该空不得分。反应物和产物之间的连线,无机反应用等号、有机反应用箭头,气体符号和沉淀符号要标清,点燃,加热,高温有区别,催化剂不能简写为“催”,这些问题出现会被扣分。

2专业术语不能错。化学上常用的专业词汇是绝对不能写错别字的,一字之差会使整个空不得分。例如“砝码”不能写成“法码”;“熔化”不能写成“溶化”;“过滤”不能写成“过虚”;“萃取”不能写成“卒取”;“坩埚”不能写成“钳锅”等等。

3当答案不唯一或有多种选择时,以最常见的方式作答不易失分。能用具体物质作答的要用具体物质作答,表达更准确。例如:举一个工业上CO做还原剂的反应,这时最好的例子就是3CO+Fe203=3C02+2Fe,这个反应应该是最熟悉的,其它反应也可写但是用不好就会扣分。比如CO和水蒸气的反应,如果没注意到这是一个可逆反应写了等号会被扣分。同时也不可泛泛举例写还原金属氧化物RO十CO=R+C02R表示金属,这样肯定不能得分,因为并不是所有的金属都成立,而且也并不一定能用于工业生产。

4对于语言叙述性题目作答时要注意,从“己知”到“未知”之间的逻辑关系必须叙述准确,且环环相扣,才能保证不丢得分点,才能得满分。回答问题要直接,不要转弯抹角;表达尽可能用唯一、准确的术语,不要多写无用的话,无用的话说错了就会扣分;作答要有明确的要点。

5对于计算型填空,要注意该写单位的要写单位。或者是要注意“空“后面所使用的单位是什么,不要因为没有书写单位或者是数量级不对而丢分。

三、掌握化学答题原则:

化学的命题是有要求的,所有的考试范围离不开考纲,所有的考试内容源于教材。所考的内容肯定是教材中有的,教材里有没有的,肯定以资讯出现。因此在答题时应该领会命题意图,去想教材里与考试内容相关的联络。平时的每一次训练当高考来对待,无论是从考试的心态,还是从答题的习惯、试卷的书写等都要与高考一致。这样,高考时才一能和平时一样轻松。

特别说明:由于各省份高考政策等资讯的不断调整与变化,育路高考网所提供的所有考试资讯仅供考生及家长参考,敬请考生及家长以权威部门公布的正式资讯为准。

 二

为了强化知识的落实和能力的提高,可以针对高考化学试题及理综化学部分试题的题型进行强化训练。常见题型有:单选题、无机推断与资讯题、有机合成推断与资讯题、实验大题、计算题等。通过题型训练,总结出每种题型的解题思路、方法和规律。解题能力也只能通过解一定数量的题,才能由量变到质变,使能力提高。

一、无机推断题的型别与解法

无机推断题的形式通常有文字描述推断、文字描述与反应式结合推断和框图题等。无机推断题是集元素化合物知识、基本概念和基本理论于一体,且综合性强、考查知识面广、思维容量大、题型多变、能力要求高、推理严密,既能检查学生掌握元素化合物的知识量及熟练程度,又能考查学生的逻辑思维能力。尤其是框图题,加强了学生直觉思维顿悟能力培养和考查,此类题在历年高考中频频出现,且体现出很好的区分度和选拔功能。

1限定范围推断:主要适用于气体或离子的推断,该类题目的主要特点是在一定范围内,根据题目给出的实验现象或必要的资料进行分析,作出正确判断。解题时要注意:①审明题意,明确范围,注意题目所给限定条件。

②紧扣现象,正确判断,特别注意当得出明确的肯定结论后因不能共存而得出否定的结论。③要注意资料对推断结论的影响。

2不定范围推断:常见元素化合物的推断。该题目的主要特点是:依据元素化合物之间相互转化时所产生的一系列实验现象,进行推理判断,确定有关的物质。题目往往综合性较强,具有一定的难度。从试题形式来看,叙述型、转化型、图表型等。解题方法思路是:见题后先迅速浏览一遍,由模糊的一遍“扫描”,自然地在头脑中产生一个关于该题所涉及知识范围等方面的整体印象,然后从题中找出特殊现象或特殊性质的描述,作为解题的突破口,以此为契机,全面分析比较,作出正确判断。

即:产生印象找突破口 意向猜测 验证确认。

3给出微粒结构等的微粒或元素推断题。解题要点:解答微粒或元素推断题的一般方法是:①熟记元素符号,直接汇出;②掌握几种关系,列式汇出;③利用排布规律,逐层汇出;④弄清带电原因,分析汇出;⑤抓住元素特征,综合汇出;⑥根据量的关系,计算汇出。

4给出混和物可能组成的框图型或叙述型推断题。解题要点:解框图型或叙述型推断题一般是根据物质的转化关系,从其中一种来推知另一种顺推或逆推,或找出现象明显、易于推断的一种物质,然后左右展开。其共同规律是:抓住现象,执因索果;试探求解,最后验证。

5给出物质间转化关系的程式码型推断题。解题指要:此类推断题的特点是用代号表示各物质的转化关系,要求“破译”出各物质的分子式或名称等,看起来较复杂,其实在解题时,只要挖掘题眼,顺藤摸瓜,便可一举攻克。

例如:有3种固体:铁粉、铜粉、氢氧化铜;6种溶液:硫酸铜、氢氧化钠、硫酸亚铁、硝酸钠、硫酸、硫酸钠。它们中的某几种物质在常温下相互转化关系用下列式子表示:

①溶液A+溶液C→固体甲+溶液D;②固体乙+溶液B→溶液E+无色气体F;

③固体甲+溶液B→溶液C+水。

试判断固体甲、乙、丙和溶液A、B、C、D、E、F各是什么物质均用分子式表示。此题属程式码型推断题,破译密码的关键是找到突破口。②、③中有特殊物质生成,可作为解答本题的突破口,对照反应物和运用规律:Fe跟稀H2SO4反应有无色气体生成置换反应,CuOH 2 和稀H 2 SO 4 反应有水生成中和反应,故固体甲是CuOH 2 、固体乙是Fe粉,固体丙必定是Cu粉;溶液B是H 2 SO 4 溶液,生成的溶液C和溶液E分别是CuSO 4 和FeSO 4 ;再由①推出溶液A和溶液D分别是NaOH和Na 2 SO 4 ,剩下的一种溶液F无疑是NaNO 3

6给出物质范围的表格型推断题:解题要点:解答表格型推断题的要决是:列表分析,对号入座;直观明快,又防漏解。

总之,解无机推断题的关键是:根据题目条件和依据物质特性确定突破口,即“题眼”。平时复习就应注意有关知识的积累。所谓“题眼”即题中所给的有效资讯,主要体现在题征反应、特征现象、特征结构及特征资料等等。

答题时要注意:看清要求,合理运用化学用语,认真书写,规范解答。

二、对于资讯题的解法

资讯迁移式试题又称资讯给予题,是由题干给出资讯,要求考生运用已学的知识解决新情景中的若干问题。这种试题的特点是题型新颖,材料陌生,构思别致,思维量大。能有效地考查考生的自学能力和思维能力。具有很好的选拔功能,这是高考题型改革的发展趋势。解题时一是会利用外显资讯正确模仿迁移;二是排除干扰资讯,进行合理筛选有效资讯迁移;三是挖掘潜在资讯,注重联想类比迁移。通过对资讯题的强化训练,培养其如下解答资讯题的能力:

1阅读理解能力:解答资讯给予题的依据是题目所给资讯。因此,通读题目,获取资讯,就是解答资讯题的首要的关键的一步。但是好些题目,特别是以文字叙述方式给予资讯的题目,不仅篇幅长,而且资讯隐含,并还有许多无用资讯,这就更要求考生有快速、准确、全面地获取有用资讯的阅读理解能力。

2观察分析能力:有些资讯给予题,特别是有机资讯合成题,重要的资讯常隐含有反应方程式或物质分子结构中,解题时需要认真研究化学方程式的变化形式,以及化学变化的部位、结构、方式和条件等。

3资料处理能力:有些题目的资讯,隐含在所给资料中,需分析处理资料,从资料中得出资讯和规律。

4类比能力:有些资讯题,只需依据所给资讯,进行简单类比就可解,将题目所给新知识、新物质与所掌握的知识或物质进行类比就可以提出正确解答。

5迁移创新能力:利用资讯正确模仿迁移。

总之,解答资讯迁移式试题,关键是如何接受资讯和处理资讯。根据资讯的来源方式,要充分利用外显资讯,善于挖掘潜在资讯,正确排除干扰资讯,通过模仿、转换、迁移、联想、类比、筛选等方法的灵活运用,迅速达到解题目的。

三、简答题的解答:

简答题是近年化学高考在第二卷中常出现的题型。它主要考查学生对所学知识理解的准确性,思维的完整性,推理的严密性和表述的条理性。近几年化学高考题中简答题的分值占到10%左右,在总分值中已占有一定的份量。简答题看起来似乎不难,但要准确回答确不易,学生多感到有力无处使,造成失分较多。学生在简答题中常见错误是:①基础知识不牢固,对有关概念、基本理论理解不透彻,不能回答出知识要点;②思维混乱,缺乏严密的逻辑思维能力;③表达不规范,不能用准确的化学用语回答问题。如何才能准确、完整、简练、严谨地解答此类题呢?我认为,除应加强基础知识教学外,还应培养学生认真审题、抓住答题的关键和要点、使用准确化学用语表述问题的能力。此外,还要加强此类题解法的指导。下面就以高考题为例,分析这类题的解答方法。

[例1].甲、乙两瓶氨水的浓度分别为1摩/升和0.1摩/升,则甲、乙两瓶氧水中[OH-]之比填大于、等于或小于10,说明理由。

答案:在同一温度下,对于同种弱电解质,浓度越小,电离度越大。甲瓶氨水的浓度是乙瓶氨水浓度的10倍,故甲瓶氨水的电离度比乙瓶氨水的电离度小,所以,甲、乙两瓶氨水中[OH-]之比应小于10。

分析:本题主要考查电解质浓度对电离度的影响。考生常常把浓度对电离度的影响和对电离平衡常数的影响相混淆,造成错解。有些考生虽对“同一弱电解质,浓度越小,电离度越大”这个大前提清楚,但要应用这一大前提分析具体问题时,却显得思维混乱、表达的逻辑关系不清。其实“答案”中用到的推理方法是我们思维中常见到的形式逻辑推理方法——“三段论”。除此而外,还有因果、先总后分或先分后总等思维方法在近年的高考简答题中均有体现。

因此,教师在教学中应加强学生逻辑思维、推理能力的训练。

[例2].在25℃时,若10个体积的某强酸溶液与1体积的某强碱溶液混和后溶液呈中性,则混和之前该强酸与强碱的pH值之间应满足的关系是。

答案:pH酸+pH碱=15

分析:本题主要考查学生对溶液酸碱性和pH值之间关系等知识的认识。

25℃时,10体积的某强酸溶液与1体积的某强碱溶液混和后溶液呈中性,说明反应中强酸的H+离子和强碱中OH-离子物质的量相等。令强酸中H+离子物质的量为0.1摩,1体积为1升,则强酸中[H+]=0.1摩/升,

pH酸=1,强碱中[OH-]=1摩/升,强碱中[H+]=10-14摩/升,

pH碱=14,因此,pH酸+pH碱=15。

解此题的关键是先要把一般关系转化成具体数值,再把由具体数值推出的特殊关系推及到一般。由于答题中涉及到由“一般→特殊→一般”这两个推理过程,因而增加了答题难度。类似推理方法的考查也出现在1993年全国高考试题中。

由此可见,提高学生的思维能力,增强学生知识迁移的能力,培养学生用化学用语准确、简明扼要说明问题的能力,是化学教学中应重视和强化的问题。

解简答题时还要注意:

1.语言要准确,不能凭主观想象和猜测来回答。如:①在回答KI溶液中滴加氯水后有什么现象时,有的同学回答成:有碘生成也有的回答成:溶液中有紫黑色的沉淀生成②有的同学把胶体微粒带电说成胶体带电。③把Zn能与盐酸反应置换出氢气说成Zn能置换出盐酸中的氢气等等。

2.化学用语要规范。常出现的错误有:⑴错别字,如蓝色写成兰色,“坩埚”写成“甘或钳锅”,“苯”写成“笨”,“剧毒”写成“巨毒”,“铁架台”写成“铁夹台”,“过滤”写成“过漏” 等等 ⑵用词不当 ⑶混淆概念如:无色与白色,广口瓶写成集气瓶,蒸馏烧瓶写成圆底烧瓶等等。

3.回答时要字斟句酌、言简意赅、逻辑性强,不要废话连篇;同时还要注意答案要点要全面完整,不要顾此失彼等等。

简答题虽然难于得分,但只要我们平时学习时多注意培养思维的严密性、知识的精确性、语言的准确性,在心理上不畏惧,做有心人则可以将失分降到最低。

四、解答填空题

解答填空题时要运用最准确的最简练的内容去填写,要注意看清题目的具体要求,如:要求书写离子方程式,不要写成化学方程式;要求写物质名称的,不要写成化学式;要求写有机物的结构简式的,不要写成化学式;要求写电子式的,不要写成结构式等等。另外,答题时书写要工整,字迹要清楚。

五、解答实验题:

做实验题最基本的要求就是你要找到它的实验目的和它应用的原理是什么,但是高考当中,往往它在实验题的考查当中,是在教材基本实验的基础上,对仪器组装上又有所改进。所以要抓住题目的切入点,运用自己已学过的知识规范做答。

六、解答计算题:

计算题的难度下降了,所以不要在计算题上抠难题。这是一个大的原则。那么计算题我觉得大部分都是在那个原子化合物知识里边,所以还要结合原子化合物知识来训练计算。基本思路就是要认真审题,尤其是计算题,你要5分钟做这个题,你应该拿3分钟来审题,这不能颠倒。最后,计算实际用到的数学知识是很简单的。关键要审题,审这里边的化学含义、化学过程,还有这个基本思路。

做计算题时,要注意解题步骤的规范化,能分步做的就不要列综合式,中间不要跳跃的太大,同时还要结合必要的文字说明,对于计算的相关的量要交代清楚。另外,书写要工整,步骤要完整。

七、解答有机题:

有机试题是化学考查中的必考知识点,主要以烃的衍生物为主,综合性强,而且往往融合了许多高新的科技成果和社会的热点并与化学有关联的一些知识,

如:“SARS”,“苏丹红一号”等都在高考试题中出现过。答题时要注意有机物化学式、结构式和结构简式的书写,书写有机物的化学方程式时要注意标明反应的条件。特别要弄清有机反应的原理,认真作答。

总之,解答非选择题要求组织语言表述答案。过去很多考生失分就是因为不会运用学科语言表达。所以考生一定要注意运用特定的规范、格式、学科语言来表述自己的思路。才能取得好的成绩。

 三

建议考生要注意安排好复习的顺序,优先复习那些提升空间较大的学科,特别是如果记忆性知识存在缺陷,一定要给予充分重视。保持适度的做题量。注重临场的解题技巧和答题规范。

问:我的理综成绩不好,尤其是化学和生物,现在再系统复习已经来不及了,我该怎么办呢?

答:虽然剩下的时间不多了,但是基础不好的同学也不要因此放弃,有努力才会有提高。一般来说,考前最有可能提分的是需要记忆的那部分,所以我建议你多在生物上下工夫,因为生物需要背记的东西相对较多;在复习化学时,也是从需要记忆的基础入手,如重要物质的性质,切不可贪多。

问:我化学基础不好,现在还有这么几天,怎么复习才能提高得更快呢?

答:化学中的重要物质的性质很关键,就如同英语中的单词一样。对于化学基础不好的同学来说,现在首先需要掌握的是重要无机物和有机物的性质包括物理性质和化学性质、用途和制备,还有课本中的反应方程式,掌握了这些才能谈得上其他。

和无机物相比,有机物的知识范围要窄些,而且比较系统,把官能团的性质都搞清楚,记住它有哪些性质、相互之间如何转化以及反应的条件,这样成绩提高可能会明显一些。

问:我的孩子现在每天基本上都在做题,我想让他看看书,他说没时间,您觉得现在应该怎么安排时间呢?

答:现在这个阶段不适合大量做题了,但是可以看看以前做过的题和老师讲过的典型例题,还有近三年来的高考题目。看高考题目的时候可以对照答案,主要是看出题和答题的思路。

至于课本,我建议考生要重视回归课本,因为万变不离其宗,高考中的重点知识不会超出课本,只是载体和呈现形式在不断变化,只有基础知识都掌握扎实了,才能很好地运用。时间富余的话仔细看看,否则可以挑重点看。

问:我的理综试卷总是做不完,有什么办法吗?

答:答不完题说明你平时的做题量不够,不够熟练。如果是这样的话,在高考中也不要慌,一慌就容易出错,既然这样,你不要把答完所有的题作为你的最终目的,你的最终目的应该是答出的每道题都是正确的。因此要敢于放弃一些对自己来说较难的、耗时的题目。同时,要注意答题顺序,总体来说应该遵循先易后难、先做选择题后做大题的原则,把用时长、难度大的题甩在最后做,不要在一道题目上浪费太多的时间。

问:我平时的总分在480分左右,化学成绩也还行,但是计算总是出错,怎么办?

答:看你的总成绩,你不应该是害怕计算的学生,而且化学中的计算题一般不是很难,造成你错误的原因可能是粗心。除了要细心之外,你计算出结果之后可以根据常识或者经验判断其是不是合理,例如一个鸡蛋的质量绝对不会是500克。去年的化学计算答题情况不理想,今年可能会略有调整。

问:我选择题总出错,该怎么补呢?

答:选择题的四个选项其实一般就是四个方面的知识点,只要对其中三个方面有把握,那这道题就可以解决了。一般来说,选择题出错就是基础知识不扎实,建议你在这方面多下工夫。

问:无机化学和实验怎么复习呢?

答:无机化学知识较庞杂,重点应放在主要物质的性质上,此外在基本理论方面要关注氧化还原和离子反应;实验是现阶段最难提高的一块儿了,但是可以多复习气体的制备、净化、收集以及物质的分离、提纯如蒸馏、萃取、分液等。

高考化学各题型的答题技巧有哪些?

1,红色,兰色,H2O,盐酸与氯化氢之间的差别只是有水和无水如果第二个实验中现象同第一个实验的现象证明其性质不同

5,加HCL

加热

加Ba(OH)2

通入加热的氧化铜

加NaOH,过滤

高中化学简单的问题!!!

一、巧妙运用“三先三后”,把握主动\x0d\1。先通览后答卷\x0d\试卷发下来后,首先要用较短的时间看看,试卷是否是你要考得那门学科,共有几页,正反面是否都印上试题,这些题目大致都是考查那些内容的,哪些是自己做过的或类似的题目,哪些内容不太熟悉,做到心中有数。通览一下,看似没有必要,实则非常重要。一些同学在考试中就遇到这种现象:做完正面,再做反面时,发现试题没有印上,再告诉监考老师,老师更换了试题,但自己做的内容得全部再抄到新试卷上,无论是心理上的焦虑还是时间上的耽误,都耽误考试,造成许多纷扰。\x0d\2。先做熟后做生\x0d\通览以后,大致知道自己哪些题目比较熟悉,心中有数了,题目设置一般是由易到难,按照试题的顺序作答就很有效。但做题过程中,会碰到一些生僻的没有见过的题目,是迎难而上、不做出来誓不罢休,还是看看题目,转而先做那些熟悉、有把握的题目呢?答案显然是后者。考试不同于科技攻关,暂时绕开那些看了两遍都没有感觉和思路的题目,对于整个高考是有利的,有利于充分利用时间,完成那些自己会做的题目,得到自己应得的分数;如果有充足的时间,再利用剩余时间返回来再完成这些题目。\x0d\3。先做易后做难\x0d\考试好比是一席盛宴,需要在规定的时间内吃到更多的东西,怎么个吃法呢?先吃豆腐红烧肉,再吃排骨红烧鱼;吃完米饭再喝汤,最后再吃大螃蟹。为什么呢?豆腐红烧肉,营养丰富,易于下咽,故先吃;排骨红烧鱼,虽营养也可以,但有骨、刺,比较耗费时间,所以后吃;螃蟹肉少,吃起来费劲,所以放在最后。做题,要根据分值和难度恰当地判断各个题目的价值,舍弃那些分值不大但难度很大的题目,保证得到比较高的分数。\x0d\由于选择题的特殊性,即使随意选择一个答案也有25%的正确率,所以不要将选择题的答案空下,根据感觉把自己认为最有可能的一个选项作为正确答案。\x0d\二、规范作答,给阅卷者最佳印象\x0d\规范解题时心中要装着三个人:一个是高素质的自我,二是精明的命题者,三是挑剔的阅卷者。内强素质是自我规范的前提,平日测练我们都要注意各环节的规范,久而久之,规范的“习惯”才会升华成“自然”的规范。一般说来,命题者总是会通过精心设计题干,在题目的知识载体中,借助于“情境、立意、设问”的巧妙角度等,嵌进一些并非显露的信息或题障,以充分体现题目良好的区分度和选拔功能,如果应试者不去认真研析命题意图,只是一味地“凭印象、凭经验、凭感觉”去思考问题,则一定会被一些表观而非本质的东西诱进陷阱。\x0d\我们的作答是让阅卷人看的,如果做题时只“唯我”而不设身处地地从评卷角度去考虑,那么一定会吃亏的。解答和书写时应时刻想到如下问题:①这样写阅卷时能否看清?②这是不是最佳角度?标准答案会从哪个角度设置?③这样的格式和布局是否有利于阅卷?④某些字符的书写是否会造成歧义或产生误会?⑤专业术语、专用符号(名词)的运用是否符合阅读或使用习惯等等。\x0d\近年高考化学阅卷分析结果给我们的最大启示是:规范答题,减少失分,势在必行!有不少同学平日测练都有这样的教训:①会而不对。主要表现在解题思路上,或考虑不全,或推理不严,或书写不准,最后答案是错的。②对而不全。主要表现在思路大致正确,最后的结论也出来了,但丢三落四,或遗漏某一答案,或讨论不够完备,或是以偏概全。③全而不精。虽面面俱到,但语言不到位,答不到点子上。多是由于答题时一系列的不规范所致。因此,我们平日练习、测试直至参加高考,在答题时必须自始至终地时时、处处规范,以求最大限度地减少非知识性失分,力争做到“会的应该是对的,对的应该是完整的”。\x0d\1。审题、思维规范\x0d\一道题目的情境、立意、设问之间存在着必然的内在联系,而通过有效审题去挖掘这些联系是形成正确的解题思路的前提,因此我们审题时应注重规范。\x0d\2。书写、表达规范\x0d\每年的阅卷评分标准上都有这样一句话:“化学专用名词中出现错别字、元素符号有错误,都要参照评分标准扣分;化学方程式、离子方程式未配平的,都不给分;在做计算题时没有考虑有效数字的,按规定扣分;没注意量纲单位的,按规定处理……”但每年都有不少同学因书写错别字、生造字、潦草字,或乱写错写化学符号、化学用语,书写不规范以及卷面乱写乱画等,而与“大学录取通知书”无缘。常见的错误有绿(氯)气,熔(溶)解,退(褪)色,消(硝)化,黄(磺)化,油酯(脂),脂(酯)化,氨(铵)盐,金钢(刚)石;元素符号错为Ce(氯),mg(镁),Ca(铜),分子式错为Co(CO),H3P(PH3),NaSO3(Na2SO3);无机方程式错用“→”,有机方程式错用“===”“↑”“↓”+Q、-Q、电荷与价标、写电子式时“[ ]”的应用及电荷标示,物质的聚集状态、特殊的反应条件等。因此,我们在做题时要严格规范,认真书写,注重语言的逻辑性,做到言简意赅,同时还要注意化学用语的有效使用,切忌辞不达意、言不由衷、语无伦次,更忌答非所问。所答内容的内涵要严格与设问的外延相吻合。\x0d\3。格式、步骤规范\x0d\规范的格式和严密的步骤,能充分体现出应试者的“严谨治学”“精益求精”的涵养,体现出应试者顺畅科学的应答思路和良好的做题习惯。以计算题为例:“解”“设”(直设和曲设)、“写”(化学方程式、关系式)、“列”(代数式、比例式)、“解”(解出答案)、“论”(必要时依据题意进行讨论)、“转”(将求解结果过渡转化成设问所求结果)、“答”(点明答案,给阅卷者提供视觉上的方便)。此外,解答过程中还要进行必要的语言衔接,“因为”“所以”“因此”“解知”“故”“由题意”等词语更要适时适地地运用,以体现规范性和严密性。\x0d\三、运用答题技巧\x0d\1。选择题\x0d\解答选择题时在认真审题的基础上仔细考虑各个选项,把选项与题干、选项与选项之间的区别联系看清楚。合理用排除法、比较法、代入法、猜测法等方法,避免落入命题人所设的“陷阱”,迅速地找到所要选项。注意题目的问题,是要选择正确的,还是要选择错误的选项。选择题的答题方法是多样化的,既能从题干出发做题,也能从选项出发验证题干作答,合理的选择解题方法快而准地找到答案,将做选择题的时间尽可能压缩到最短,为解决后面的大题腾出更多时间。\x0d\2。非选择题答题策略和答题技巧\x0d\对于非选择题在答题时有些共性的要求。\x0d\(1)化学方程式的书写要完整无误。没配平、条件错、有机反应少写物质(水等)会造成该空不得分。反应物和产物之间的连接,无机反应用等号、有机反应用箭头,气体符号和沉淀符号要标清,点燃、加热、高温有区别,催化剂不能简写为“催”,这些问题出现会被扣分。\x0d\(2)专业用语不能错。化学上常用的专业词汇是绝对不能写错别字的,一字之差会使整个空不得分。\x0d\例如“砝码”不能写成“法码”;“熔化”不能写成“溶化”;“过滤”不能写成“过虚”;“萃取”不能写成“卒取”;“坩埚”不能写成“坩锅”等等。\x0d\(3)当答案不唯一或有多种选择时,以最常见的方式作答不易失分。能用具体物质作答的要用具体物质作答,表达更准确。例如举一个工业上CO做还原剂的反应,这时最好的例子就是写3CO+Fe2O3==高温3CO2+2Fe,这个反应应该是最熟悉的,其他反应也可写,但是用不好就会扣分。比如CO和水蒸气反应,如果没注意到这是一个可逆反应写了等号会被扣分。同时也不可泛泛举例写还原金属氧化物的通式:RO+CO===R+CO2(R表示金属),这样肯定不能得分,因为并不是所有的金属都成立,而且也并不一定能用于工业生产。\x0d\(4)对于语言叙述性题目作答时要注意,从“已知”到“未知”之间的逻辑关系必须叙述准确,且环环相扣,才能保证不丢得分点,才能得满分。回答问题要直接,不要转弯抹角;表达尽可能用唯一、准确的主语;不要多写无用的话,无用的话说错了就会扣分;作答要有明确的要点。

高考化学实验常常会提到"基于设1进行实验探究",有些题目就直接认为其是正确的,因而在实验现象和结论中的

1 c,其他有负反应,得到产品不纯

2,环烷烃和烯烃不是同系物

3 不能,烷烃不溶于水。且没有亲水集团-OH -COOH

4 溶解,溶液为蓝色

无水硫酸铜白色粉末,变为蓝色粉末(五水合硫酸铜CuSO4.H2O),检验生成气体有H2O的重要方法之一

5

鉴别时要用Br2,Br2反应范围相对KMnO4略小些,不与醇类醚类醛类物质反应。

酸性高锰酸钾氧化性强,生成CO2气体,溶液褪色,如果有其他醛类物质也是同样的现象,所以无法用这个方法鉴别烯烃,醛类物质。(适用于烷烃,烯烃鉴别。)

烷烃烯烃炔烃是燃烧,放黑烟的是炔烃,烯烃略少

6 裂化汽油含有不饱和烯炔烃,与I2反应加成,无法萃取。

这个可以用来鉴别不饱和键

7

测定CO2 与H2O的质量,换算成C H的质量,相加后等于反应前质量的话,根据质量守恒定律,证明里面只含这两种成分,如果小于,证明里面含有O

8 应该是不互溶的,Na+亲水。乙酸乙酯不溶于水。所以可以用水来分液隔离

一般来说乙酸乙酯在盐中的溶解性相对来说更小些。Na2CO3盐析

高考化学推断题常见物质及关系

其实是这样的

第一种是实验后发现了……现象,最后得出结论,看结论是否与设矛盾

第二种是设正确,则会有一些特定现象,比较看到的现象是否与特定现象矛盾,适合一步实验

第一种得出的结论是唯一的,直接比较即可,适合无法一步解决或者设里要验证的东西很多的实验

第二种会得出多种现象,需要一个个讨论,适合一步解决的实验

尽管第一种没设成立,有自己探究过程。但是做的实验目的全都围绕着设的情况,也就是基于设。第二种也是基于设

高中化学都学什么内容?

1号元素 氢:原子半径最小,同位素没有中子,密度最小的气体。6号元素 碳:形成化合物最多的元素,单质有三种常见的同素异形体(金刚石、石墨、富勒烯)。7号元素 氮:空气中含量最多的气体(78%),单质有惰性,化合时价态很多,化肥中的重要元素。8号元素氧:地壳中含量最多的元素,空气中含量第二多的气体(21%)。生物体中含量最多的元素,与生命活动关系密切的元素,有两种气态的同素异形体。9号元素 氟:除H外原子半径最小,无正价,不存在含氧酸,氧化性最强的单质。2.常见的框图结构探讨注:本资料的方程式中省去了部分的反应条件省略部分反应物和生成物的框图结构(1)三角关系型“三角转化关系”是推断题中经常提到的一种重要的转化关系,一般的“三角关系”是三者之间均可相互转化的形式,如课本上提到过的“铁三角”。而推断题中常出现的是上图中的简化型的“三角关系”。这种转化模式中,B相当于由A到C的一个中间物质,其性质应是较为多样的。下面给出几组非常重要的“三角关系”。①铁三角 “铁三角”的转化是无机推断题中永恒的热点,考察的变化很多,但基本的原则是始终如一的。单质Fe和Fe2+离子都是还原剂,而Fe3+是氧化剂,Fe2+/Fe和Fe3+/Fe2+构成两组氧化还原电对。在相应的氧化剂或还原剂作用下,即可实现氧化还原电对中氧化型与还原型的相互转化。而Fe单质直接转化为Fe3+,需要通过O2、Cl2、硝酸等强氧化剂的作用,将Fe3+转化为Fe单质,则应用还原剂还原Fe的+3价氧化物。当然,在三角转化关系之外,我们还应注意这三者同时出现的反应Fe+2Fe3+==3Fe2+。下面是一组填入上面的简化三角关系图的情况:A. Fe B. FeCl2 C. FeCl3Fe+2HCl==FeCl2+H2↑ 2FeCl2+Cl2==2FeCl3 2Fe+3Cl2 2FeCl3与Fe元素有关的另一组重要的情况A. Fe3+(FeCl3、Fe2(SO4)3等) B. Fe(OH)2 C. Fe(OH)3Fe3++3OH-== Fe(OH)3↓ Fe2++2OH-== Fe(OH)2↓ 4Fe(OH)2+O2+2H2O==4Fe(OH)3特别要注意的是B→C的反应现象为“沉淀先变成灰绿色,后变成红褐色”。②铝三角 “铁三角”是“氧化还原三角”,而“铝三角”则是“离子反应三角”,二者正好代表了高中阶段重点接触的两种基本反应。铝三角的成因是Al(OH)3的,即Al(OH)3在溶液体系中存在两种电离方式H++AlO2-+H2O Al(OH)3 Al3++3OH-,Al(OH)3在酸中溶解变成Al3+,在碱中溶解变成AlO2-,基于上面的两个可逆反应,便形成了三角转化关系。同样,我们也应注意这三者同时出现的反应Al3++3AlO2-+6H2O==4Al(OH)3↓下面是一组填入上面的简化三角关系图的情况:A. Al3+ B. Al(OH)3 C. AlO2-Al3++3OH-== Al(OH)3↓ Al(OH)3+ OH-== AlO2--+2H2O Al3++4OH-== AlO2--+2H2O当然,任意调换三者的位置,我们都可以得到一组合理的能填入上面的简化三角关系图的情况。若考虑Al单质,还可以得到下面的填法:A. Al B. Al3+ C. AlO2-2Al+6H+==2Al3++3H2↑ Al3++4OH-== AlO2--+2H2O 2Al+2OH-+2H2O==2AlO2-+3H2↑或可填成 A. Al B. AlO2- C. Al3+2Al+2OH-+2H2O==2AlO2-+3H2↑ AlO2-+4H+ ==Al3++2H2O 2Al+6H+==2Al3++3H2↑③“碱—正盐—酸式盐”三角 “碱—正盐—酸式盐”三角关系是我们从初中阶段就开始接触到的经典转化关系,和“铝三角“一样,它也是一个基于电解质溶液和离子反应原理的转化关系。这一三角关系的关键环节是酸式盐离子HCO3-,在溶液中,其存在着电离和水解的双重平衡;在固体状态下,酸式盐能分解成正盐。而利用沉淀反应的方法可以实现CO32-→OH-,HCO3-→OH-的转化。同样,我们也应该注意三者同时出现的反应 OH-+HCO3-==CO32-+H2O下面是一组填入上面的简化三角关系图的情况:A. Na2CO3 B. NaOH C. NaHCO3CO2+H2O+Na2CO3==2NaHCO3 Na2CO3+Ca(OH)2==CaCO3↓+2NaOHCO2+NaOH==NaHCO3(过量CO2通入NaOH溶液中)实际的题目中,命题人常常会将Na单质和其氧化物加入到上面的“NaOH—Na2CO3—NaHCO3”关系中,构成复合反应关系,如下面得这个简单的框图,它实际上是由两个前面的“简化三角关系图”复合而成的,若A为Na单质,有下面的填法: A . Na B. Na2O C. Na2O2 D. NaOH E. Na2CO3 F. NaHCO34Na+O2==2Na2O 2Na+O2==Na2O2 2Na2O+O2==2Na2O2 2Na2O2+2H2O==4NaOH+O2↑ CO2+2NaOH==Na2CO3+H2O CO2+H2O+Na2CO3==2NaHCO3 CO2+NaOH==NaHCO3藉由反应2Na2O2+2CO2==2Na2CO3+O2↑,当D为Na2CO3时同样能填出右边的三个空。 除了上面三个典型的三角关系外,若充分挖掘高中化学中的反应方程式,我们还可以以“N、S、Cl、Mg、C、Si、P”等各种常见元素为中心写出很多个三角关系图(不一定要完全能相互转化),并据此填出上面的简化三角关系图,这项工作交由读者们自己来完成。同学们列关系图时,一定要注意自己所列的是“氧化还原关系图(如”铁三角“)”还是“离子反应关系图(如“碱—正盐—酸式盐”三角)”,这是充分掌握这些反应关系的前提。 (2)直线型 直线转化是框图中常见的结构,而命题人最青睐的莫过于上面的“连续氧化型”的线型框图。连续氧化型框图中B、C是一种元素的两种不同价态的化合物,而A可以是单质,也可以是化合物。连续氧化型框图中“A+O2→B”、“B+O2→C”是“主干部分”,而有些框图通常还会在最后加上“C+H2O→D”一步,或在前面加上“D+H2O→A”。在直线型的框图中,A、B、C、D中一般都含有同一种元素。下面是以某种元素为主线的符合连续氧化条件的几组常见物质:①主线元素:CA. C(CH4、C2H4、C2H2、C2H6等烃类)B. CO C. CO2 D.H2CO3A→B为碳或烃类的不完全燃烧,B→C为CO的燃烧,如2C+O2==2CO(CH4+3O2==2CO+4H2O等) 2CO+O2==2CO2 CO2+H2O==H2CO3②主线元素:SA. S(H2S、FeS2等) B. SO2 C. SO3 DH2SO4A→B为S或H2S的完全燃烧或煅烧FeS2等含硫的矿物,B→C为SO2的接触氧化,C→D为SO3的吸收,硫酸工业的流程也符合这一转化关系,如S+O2==SO2(2H2S+3O2==2SO2+2H2O或4FeS2+11O2==2Fe2O3+8SO2)2SO2+O22SO3 SO3+H2O==H2SO4③主线元素:NA. N2(NH3) B. NO C. NO2 DHNO3A→B为N2与O2放电时反应或NH3的催化氧化,B→C为NO的氧化,C→D为NO2与H2O的重新生成NO的反应,如N2+O22NO(4NH3+5O2==4NO+6H2O) 2NO+O2==2NO2 3NO2+H2O==2HNO3+NO④主线元素:Na、OA. Na B. Na2O C.Na2O2 DNaOH这一关系中虽然A、B、C、D中都含有Na元素,但决定了这一关系的实际上是O元素的价态变化。A→B为Na在空气中的氧化,B→C为Na2O的进一步氧化,C→D为Na2O2与H2O的放出O2的反应,如4Na+O2==2Na2O 2Na2O+O2==2Na2O2 2Na2O2+2H2O==4NaOH+O2↑⑤有机物的连续氧化有机化学中醇→醛→酸转化正好也能构成一个连续氧化关系,而将D移至A前,构成“D+H2O→A”的转化,然后加入“A+C→E”的转化,便可得到“卤代烃→醇→醛→酸→酯”的完整转化关系,如CH3CH2Br+H2O→CH3CH2OH+HBr 2CH3CH2OH+O2→2CH3CHO+2H2O2CH3CHO+O2→CH3COOH CH3COOH+ C2H5OH→CH3COOCH2CH3+H2O对于一般的直线型转化关系,当A、B、C、D中含有同一种元素时,我们可以写出很多组情况。读者们可以用“接龙”的方法进行训练,即先写出A物质,然后根据某个反应条件使A转化为B,A与B中至少有一种元素相同;不断重复这一过程直至填出A、B、C、D为止(或者一直填下去,直至填不出下一个物质为止)。这不失为充分训练元素化合物推断的一种好方法。下面给出几组示例:①H2→H2O→NaOH→Mg(OH)2 ②CaC2→C2H2→CO2→CO32-③NH4HCO3→NH3→NO→NO2 ④Na→Na2O2→Na2CO3→NaOH⑤Mg→MgO→Mg2+→Mg(OH)2 ⑥Al3+(AlO2-)→Al(OH)3→Al2O3→Al⑦Na2SiO3→H2SiO3→ SiO2→Si ⑧P→P2O5→H3PO4→Ca3PO4⑨NaCl→Cl2→Ca(ClO)2→HClO ⑩Cu→CuO→Cu2+→Cu(OH)2

高中化学都学什么内容?

我是江苏的,我就江苏的课本给你说说.

高中化学大部分内容都是无机,高一时先学习摩尔概念和分散系,后学卤族,氧族,氮族,碱金属,以及过渡金属中的铁铜,还有碳族等.之后还有化学反应原理(包括原电池,化学平衡相关内内容,)物质结构与性质,等,最后就有机化学基础了!!!

高中化学都学什么了

化学平衡,氧化还原反应,有机化学,离子方程式,燃烧热计算,原电池和电解池这些应该是较重点的部分。我告诉你,复习化学其实很简单。以下告诉你我的方法,你试试看。第一,对于推断题,需要你整理图示,例如,钠和钠的化合物,写出各种钠的化合物,然后想想怎么反应得到,什么条件,反应现象,各物质的颜色,写下这些方程式,最好先默写,不会的再对照书本,这样子就可以记忆很牢。第二,对于化学方程式,常见的氧化还原反应方程式需要记忆,即之前说的默写,最好是每次复习或者是有涉及到的时候,全部默写。高考中很多都是书本上的化学方程式,也就一道题会涉及陌生方程需要配平的。第三,化学平衡是重点,这个需要你打好基础,知道什么情况下平衡会怎么移动,最好整理一下。这种题型万变不离其宗,所以懂得基础也就好了。第四,原电池和电解池也是需要你明白阴阳极,然后记忆一些常见的原电池方程式,电解方程式也记忆。第五,燃烧热,这个简单,知道怎么配成所需计算的能量方程式,也就可以了。第六,对于计算题,也是需要在熟知化学方程式的前提下计算。所以总体来说,你需要整理思路,整理解题思路,打好基础。要是有啥要问的,就来找我吧。

高中必修2化学都学什么内容

一、元素周期表和元素周期律

二、化学反应与能量

主要讲化学反应与热能、电能,化学反应速率与限度

三、常见的有机化合物

四、化学与可持续发展

主要讲金属矿物、海水利用、环境保护

请问高中化学都学什么?

高中化学知识点很多,需要记忆的部分也很多,主要是化学方程式及各个概念的区分与应用。包括有机化学跟无机化学两部分。

高中化学竞赛考什么内容

高中化学竞赛考试内容: 全国高中学生化学竞赛基本要求 2008年4月19日 说明: 1. 本基本要求旨在明确全国高中学生化学竞赛初赛及决赛试题的知识水平,作为试题命题的依据.本基本要求不包括国家代表队选手选拔赛的要求. 2. 现行中学化学教学大纲、普通高中化学课程标准及高考说明规定的内容均属初赛要求.高中数学、物理、生物、地理与环境科学等学科的基本内容(包括与化学相关的我国基本国情、宇宙、地球的基本知识等)也是本化学竞赛的内容.初赛基本要求对某些化学原理的定量关系、物质结构、立体化学和有机化学作适当补充,一般说来,补充的内容是中学化学内容的自然生长点. 3. 决赛基本要求在初赛基本要求的基础上作适当补充和提高. 4. 全国高中学生化学竞赛是学生在教师指导下的研究性学习,是一种课外活动.针对竞赛的课外活动的总时数是制定竞赛基本要求的重要制约因素.本基本要求估计初赛基本要求需40单元(每单元3小时)的课外活动(注:40单元是按高一、高二两年约40周,每周一单元计算的);决赛基本要求需追加30单元课外活动(其中实验至少10单元)(注:30单元是按10、11和12月共三个月约14周,每周2~3个单元计算的). 5. 最近三年同一级别竞赛试题所涉及的符合本基本要求的知识自动成为下届竞赛的要求. 6. 本基本要求若有必要做出调整,在竞赛前4个月发出通知.新基本要求启用后,原基本要求自动失效. 初赛基本要求 1. 有效数字 在化学计算和化学实验中正确使用有效数字.定量仪器(天平、量筒、移液管、滴定管、容量瓶等等)测量资料的有效数字.数字运算的约化规则和运算结果的有效数字.实验方法对有效数字的制约. 2. 气体 理想气体标准状况(态).理想气体状态方程.气体常量R.体系标准压力.分压定律.气体相对分子质量测定原理.气体溶解度(亨利定律). 3. 溶液 溶液浓度.溶解度.浓度和溶解度的单位与换算.溶液配制(仪器的选择).重结晶方法以及溶质/溶剂相对量的估算.过滤与洗涤(洗涤液选择、洗涤方式选择).重结晶和洗涤溶剂(包括混合溶剂)的选择.胶体.分散相和连续相.胶体的形成和破坏.胶体的分类.胶粒的基本结构. 4. 容量分析 被测物、基准物质、标准溶液、指示剂、滴定反应等基本概念.酸碱滴定曲线(酸碱强度、浓度、溶剂极性对滴定突跃影响的定性关系).酸碱滴定指示剂的选择.以高锰酸钾、重铬酸钾、硫代硫酸钠、EDTA为标准溶液的基本滴定反应.分析结果的计算.分析结果的准确度和精密度. 5. 原子结构 核外电子的运动状态: 用s、p、d等表示基态构型(包括中性原子、正离子和负离子)核外电子排布.电离能、电子亲合能、电负性. 6. 元素周期律与元素周期系 周期.1~18族.主族与副族.过渡元素.主、副族同族元素从上到下性质变化一般规律;同周期元素从左到右性质变化一般规律.原子半径和离子半径.s、p、d、ds、f区元素的基本化学性质和原子的电子构型.元素在周期表中的位置与核外电子结构(电子层数、价电子层与价电子数)的关系.最高氧化态与族序数的关系.对角线规则.金属与非金属在周期表中的位置.半金属(类金属).主、副族的重要而常见元素的名称、符号及在周期表中的位置、常见氧化态及其主要形体.铂系元素的概念. 7. 分子结构 路易斯结构式.价层电子对互斥模型.杂化轨道理论对简单分子(包括离子)几何构型的解释.共价键.键长、键角、键能.σ键和π键.离域π键.共轭(离域)体系的一般性质.等电子体的一般概念.键的极性和分子的极性.相似相溶规律.对称性基础(限旋转和旋转轴、反映和镜面、反演和对称中心). 8. 配合物 路易斯酸碱.配位键.重要而常见的配合物的中心离子(原子)和重要而常见的配体(水、羟离子、卤离子、拟卤离子、氨、酸根离子、不饱和烃等).螯合物及螯合效应.重要而常见的配合反应.配合反应与酸碱反应、沉淀反应、氧化还原反应的关系(定性说明).配合物几何构型和异构现象的基本概念和基本事实.配合物的杂化轨道理论.用杂化轨道理论说明配合物的磁性和稳定性.用八面体配合物的晶体场理论说明Ti(H2O)63+的颜色.软硬酸碱的基本概念和重要的软酸软碱和硬酸硬碱. 9. 分子间作用力 范德华力、氢键以及其他分子间作用力的能量及与物质性质的关系. 10. 晶体结构 分子晶体、原子晶体、离子晶体和金属晶体.晶胞(定义、晶胞引数和原子座标)及以晶胞为基础的计算.点阵(晶格)能.配位数.晶体的堆积与填隙模型.常见的晶体结构型别:NaCl、CsCl、闪锌矿(ZnS)、萤石(CaF2)、金刚石、石墨、硒、冰、干冰、金红石、二氧化矽、钙钛矿、钾、镁、铜等. 11. 化学平衡 平衡常数与转化率.弱酸、弱碱的电离常数.溶度积.利用平衡常数的计算.熵(混乱度)的初步概念及与自发反应方向的关系. 12. 离子方程式的正确书写. 13. 电化学 氧化态.氧化还原的基本概念和反应式的书写与配平.原电池.电极符号、电极反应、原电池符号、原电池反应.标准电极电势.用标准电极电势判断反应的方向及氧化剂与还原剂的强弱.电解池的电极符号与电极反应.电解与电镀.电化学腐蚀.常见化学电源.pH、络合剂、沉淀剂对氧化还原反应影响的说明. 14. 元素化学 卤素、氧、硫、氮、磷、碳、矽、锡、铅、硼、铝.碱金属、碱土金属、稀有气体.钛、钒、铬、锰、铁、钴、镍、铜、银、金、锌、汞、钼、钨.过渡元素氧化态.氧化物和氢氧化物的酸碱性和.常见难溶物.氢化物的基本分类和主要性质.常见无机酸碱的基本性质.水溶液中的常见离子的颜色、化学性质、定性检出(不包括特殊试剂)和一般分离方法.制备单质的一般方法. 15. 有机化学 有机化合物基本型别——烷、烯、炔、环烃、芳香烃、卤代烃、醇、酚、醚、醛、酮、酸、酯、胺、酰胺、硝基化合物以及磺酸的命名、基本性质及相互转化.异构现象.加成反应.马可尼科夫规则.取代反应.芳环取代反应及定位规则.芳香烃侧链的取代反应和氧化反应.碳链增长与缩短的基本反应.分子的手性及不对称碳原子的R、S构型判断.糖、脂肪、蛋白质的基本概念、通式和典型物质、基本性质、结构特征及结构表示式. 16. 天然高分子与合成高分子化学的初步知识(单体、主要合成反应、主要类别、基本性质、主要应用). 决赛基本要求 本基本要求在初赛要求基础上增加下列内容,数学工具不涉及微积分. 1. 原子结构 四个量子数的物理意义及取值.氢原子和类氢离子的原子轨道能量的计算.s、p、d原子轨道轮廓图及应用. 2. 分子结构 分子轨道基本概念.定域键键级.分子轨道理论对氧分子、氮分子、一氧化碳分子、一氧化氮分子的结构和性质的理解及应用.一维箱中粒子模型对共轭体系电子吸收光谱的解释.超分子的基本概念. 3. 晶体结构 点阵的基本概念.晶系.根据巨集观对称元素确定晶系.晶系与晶胞形状的关系.十四种空间点阵型别.点阵的带心(体心、面心、底心)结构的判别.正当晶胞.布拉格方程. 4. 化学热力学基础 热力学能(内能)、焓、热容、自由能和熵.生成焓、生成自由能、标准熵及有关计算.反应的自由能变化与反应的方向性.吉布斯-亥姆霍兹方程及其应用.范特霍夫等温方程及其应用.标准自由能与标准平衡常数.平衡常数与温度的关系.热化学回圈.相、相律和单组分相图.克拉贝龙方程及其应用. 5. 稀溶液的通性(不要求化学势). 6. 化学动力学基础 反应速率基本概念.速率方程.反应级数.用实验资料推求反应级数.一级反应积分式及有关计算(速率常数、半衰期、碳-14法断代等).阿累尼乌斯方程及计算(活化能的概念与计算;速率常数的计算;温度对速率常数影响的计算等).反应程序图.活化能与反应热的关系.反应机理一般概念及推求速率方程(速控步骤、平衡设和稳态设).离子反应机理和自由基反应机理基本概念及典型例项.催化剂及对反应的影响(反应程序图).多相反应的反应分子数和转化数. 7. 酸碱质子理论 缓冲溶液的基本概念、典型缓冲体系的配制和pH计算.利用酸碱平衡常数的计算.溶度积原理及有关计算. 8. Nernst方程及有关计算.原电池电动势的计算.pH对原电池的电动势、电极电势、氧化还原反应方向的影响.沉淀剂、络合剂对氧化还原反应方向的影响.用自由能计算电极电势和平衡常数或反之. 9. 配合物的晶体场理论 化学光谱序列.配合物的磁性.分裂能、电子成对能、稳定化能.利用配合物平衡常数的计算.络合滴定.软硬酸碱.配位场理论对八面体配合物的解释. 10. 元素化学描述性知识达到国际竞赛大纲二级水平. 11. 自然界氮、氧、碳的回圈.环境污染及治理、生态平衡、绿色化学的一般概念. 12. 有机化学描述性知识达到国际竞赛大纲二级水平(不要求不对称合成,不要求外消旋体拆分). 13. 氨基酸、多肽与蛋白质的基本概念.DNA与RNA. 14. 糖的基本概念.葡萄糖、果糖、甘露糖、半乳糖.糖苷.纤维素与淀粉. 15. 有机立体化学基本概念.构型与构象.顺反异构(trans-、cis-和Z-、E-构型).对映异构与非对映异构.endo-和exo-.D,L构型. 16. 利用有机物的基本反应对简单化合物的鉴定和结构推断. 17. 制备与合成的基本操作 用电子天平称量.配制溶液、加热、冷却、沉淀、结晶、重结晶、过滤(含抽滤)、洗涤、浓缩蒸发、常压蒸馏与回流、倾析、分液、搅拌、干燥.通过中间过程检测(如pH、温度、颜色等)对实验条件进行控制.产率和转化率的计算.实验室安全与事故紧中国处置的知识与操作.废弃物处置.仪器洗涤与干燥.实验工作台面的安排和整理.原始资料的记录与处理. 18. 常见容量分析的基本操作、基本反应及分析结果的计算.容量分析的误差分析. 19. 分光光度法.比色分析

高中化学什么比较重要,都有什么内容

在高中阶段,高一并不难,例如学习的离子方程式,只是为了给高二做准备,从高二开始,较为重要的是化学平衡,也是较难的一部分,很多同学在这里就落下了,所以你应该在这一部分下较大的努力。就高二这一本书最重要,高三的课程并不是最重要的,所以在整个高中阶段,高二的化学最重要,努力去学吧!

高中化学选修5高考考什么内容?

选修五是有机化学基础,在高考中一般作选做题,考察有机合成过程及推断。

关于正本教材:

《有机化学基础》主要突出了“结构决定性质”这一主线。第一章以烃为载体,认识有

机化合物的结构特点,

初步体现了结构与性质的关系;

第二章以烃的衍生物为载体,

着重分

析官能团与性质的关系,

进一步体现了结构如何决定性质;

第三章是前两章知识的综合运用,

介绍合成有机化合物的基本思路和方法。

高中化学一般都学什么啊

和初中差不多吧 就是反应型别变多了 反应在不同条件下产物也不同 还增加了有机反应

高中化学选什么内容进行说课好

选你自己拿手的。要有自己的亮点。注意现在说的内容与过去比较有了很大的变化。比如用多媒体展示上课的情景。

高中化学内容与初中化学内容衔接大吗

你好。初中化学是高中化学的基础。

你要是不想补,肯定跟不上。

文章标签: # 化学 # 反应 # 物质