您现在的位置是: 首页 > 教育政策 教育政策
数列高考难点_高考数列难题汇总
tamoadmin 2024-07-11 人已围观
简介1.急啊!!快高考了,如何学数列?2./高考中“数列”这一章一般考什么,请给我详细的总结,最好含有例题,谢谢3.2022高考数学大题题型总结_数学大题题型4.高中数学数列部分真的好难,谁知道有什么比较好的复习方法吗?或者说对于文科生而言,数列在高考中应该重...5.高考数学,数列,证明题,能在一下午学透彻么。首先,我们应该了解为什么最后一个问题很难,在哪里很难?难点在于知识点多,难点在于每个知识点
1.急啊!!快高考了,如何学数列?
2./高考中“数列”这一章一般考什么,请给我详细的总结,最好含有例题,谢谢
3.2022高考数学大题题型总结_数学大题题型
4.高中数学数列部分真的好难,谁知道有什么比较好的复习方法吗?或者说对于文科生而言,数列在高考中应该重...
5.高考数学,数列,证明题,能在一下午学透彻么。
首先,我们应该了解为什么最后一个问题很难,在哪里很难?难点在于知识点多,难点在于每个知识点都要掌握到位。解决问题时,知识点存在漏洞,可能导致问题无法解决.也就是说,对于有知识漏洞的学生来说,压轴题很难.怎么办?补充知识漏洞,从最简单的基础知识开始.一定有同学说我的基础知识很好,不用加强。.错误,这是一个非常错误的想法.如果基础知识好,最后一个问题不大。你说的很好,没有达到100%的熟练应用,也没有深入理解.另外知识的细节处一定要注意,可能导致错误的是一些细节.
高中数学的最后两道题通常是最后两道题。高考一般涉及圆锥曲线、数列和函数导师,分数大致25-30分数左右。如果你想获得超过140分,最后一道题是一个必须克服的困难。当然,有一定基础的学生要注意最后一道题,基础薄弱的学生要注重巩固基础。首先,我们应该一步一步地从浅到深。如果你训练最后一个问题,你应该以中间问题为基础。通常,你可以1:1地进行中间问题和最后一个问题的混合练习。
如果中等难度的问题能够完全正确地赢得,这意味着你的数学计算和思维能力已经达到了合格的水平。有了克服最后一个问题的基础,最后一个问题的效果会更好。最后一个问题通常分为两个或三个小问题,前面的比较基础,但必须正确回答,否则会影响以后的思维,可能会导致完全错误的可能性。最后一个问题通常是基于以前的问题,思考应该注意连贯性
压轴题往往是对数学能力的综合考察,不是简单盲目多做题就能训练出来的,更多的是靠数学能力“感觉”。这种感觉可以通过长期的积累和思考来提高,但说实话,如果你不感兴趣,可能很难训练。更重要的是,你不能谈论最后一个问题。恐惧肯定会让你学不好数学。许多人不想学好数学,而是不想学好数学。当我上初中的时候,我的数学不是很好,因为有一些“怵”,恐惧的原因是一段时间考不好,没有提高,尤其是压轴题。
急啊!!快高考了,如何学数列?
数列是高中数学的重要内容,又是学习高等数学的基础。高考对数列的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。下面是我为大家整理的关于高中数学数列 方法 和技巧,希望对您有所帮助。欢迎大家阅读参考学习!
1高中数学数列方法和技巧
一.公式法
如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式.注意等比数列公示q的取值要分q=1和q≠1.
二.倒序相加法
如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.
三.错位相减法
如果一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.
四.裂项相消法
把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.用裂项相消法求和时应注意抵消后并不一定只剩下第一项和最后一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的.
五.分组求和法
若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减.
2高中数学数列问题的答题技巧
高中数列,有规律可循的类型无非就是两者,等差数列和等比数列,这两者的题目还是比较简单的,要把公式牢记住,求和,求项也都是比较简单的,公式的运用要熟悉。
题目常常不会如此简单容易,稍微加难一点的题目就是等差和等比数列的一些组合题,这里要采用的一些方法有错位相消法。
题目变化多端,往往出现的压轴题都是一些从来没有接触过的一些通项,有些甚至连通项也不给。针对这两类,我认为应该积累以下的一些方法。
对于求和一类的题目,可以用柯西不等式,转化为等比数列再求和,分母的放缩,数学归纳法,转化为函数等方法等方法
对于求通项一类的题目,可以采用先代入求值找规律,再数学归纳法验证,或是用累加法,累乘法都可以。
总之,每次碰到一道陌生的数列题,要进行 总结 ,得出该类的解题方法,或者从中学会一种放缩方法,这对于以后很有帮助。
3高考数学解题方法
解题过程要规范
高考数学计算题要保证既对且全,全而规范。应为高考数学计算题表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。
解决高考数学计算题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”,如此将应用性问题转化为纯数学问题。当然,高考数学计算题解题过程和结果都不能离开实际背景。
先熟后生
高考数学书卷发下来后,通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对高考数学全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的数学计算。这样,在拿下数学熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。
4高中生学好数学的诀窍
首先、准备好 笔记本 和草稿本,笔记本不是让你记公式记概念,那些东西书上都有,没必要再誊一遍到笔记本上,笔记本上主要记老师给的例题。毕竟老师是很有 经验 的,他们给的例题一定是很有代表性的,必要的时候可以背一背例题的解题方法,理解思路。
草稿本就是有些不是很重要的题,老师让举一反三这类的东西,就没必要写在笔记上,但是一定要跟着算,在纸上写两笔算一下绝对比你光看光想的效果要好得多。
其次、上课一定集中注意力,要和老师有一定的互动,时间长了,上课百分之九十的时间老师都是在看着你讲课,你不点头表示明白了她就不往下讲。。毕竟一节课四十分钟,一个老师一节课平均分给每个学生也就不到一分钟,所以自私点说,就是要给自己争取时间。
课下有问题就问,最好不要问同学,尤其是以为脑子很聪明所以数学学的好的同学,这种人千万别问,倒不是说人家不愿意给你讲,而是现在毕竟是应试 教育 ,那些聪明的同学上课不一定听讲有多认真,有些人做题就是根据自己的思路走,那些解题方法可能适合于他们并不适合你,所以问题一定找老师,老师会给你一套最适合应试的解题方法。
高中数学数列方法和技巧相关 文章 :
1. 高中数学的100个学习方法与高中数学48条秒杀的公式
2. 高中数学学习方法和技巧是什么
3. 高中数学学习的方法技巧
4. 高中数学数列通项公式的求法
5. 高中数学六种解题技巧与五种数学答题思路
6. 高二数学学习方法和技巧大全
7. 高中数学50个解题小技巧
8. 高中数学学习方法及策略
9. 高中数学学习方法总结
/高考中“数列”这一章一般考什么,请给我详细的总结,最好含有例题,谢谢
求数列通项公式的常规思想方法列举(配典型例题)
数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。
一. 观察法
例1:根据数列的前4项,写出它的一个通项公式:
(1)9,99,999,9999,…
(2)
(3)
(4)
解:(1)变形为:101-1,102―1,103―1,104―1,……
∴通项公式为:
(2) (3) (4) .
观察各项的特点,关键是找出各项与项数n的关系。
二、定义法
例2: 已知数列{an}是公差为d的等差数列,数列{bn}是公比为q的(q∈R且q≠1)的等比数列,若函数f (x) = (x-1)2,且a1 = f (d-1),a3 = f (d+1),b1 = f (q+1),b3 = f (q-1),
(1)求数列{ a n }和{ b n }的通项公式;
解:(1)∵a 1=f (d-1) = (d-2)2,a 3 = f (d+1)= d 2,
∴a3-a1=d2-(d-2)2=2d,
∴d=2,∴an=a1+(n-1)d = 2(n-1);又b1= f (q+1)= q2,b3 =f (q-1)=(q-2)2,
∴ =q2,由q∈R,且q≠1,得q=-2,
∴bn=b?qn-1=4?(-2)n-1
当已知数列为等差或等比数列时,可直接利用等差或等比数列的通项公式,只需求得首项及公差公比。
三、 叠加法
例3:已知数列6,9,14,21,30,…求此数列的一个通项。
解 易知
∵
……
各式相加得 ∴
一般地,对于型如 类的通项公式,只要 能进行求和,则宜采用此方法求解。
四、叠乘法
例4:在数列{ }中, =1, (n+1)? =n? ,求 的表达式。
解:由(n+1)? =n? 得 ,
= … = 所以
一般地,对于型如 = (n)? 类的通项公式,当 的值可以求得时,宜采用此方法。
五、公式法
若已知数列的前 项和 与 的关系,求数列 的通项 可用公式
求解。
例5:已知下列两数列 的前n项和sn的公式,求 的通项公式。
(1) 。 (2)
解: (1)
= = =3
此时, 。∴ =3 为所求数列的通项公式。
(2) ,当 时
由于 不适合于此等式 。 ∴
注意要先分n=1和 两种情况分别进行运算,然后验证能否统一。
例6. 设数列 的首项为a1=1,前n项和Sn满足关系
求证:数列 是等比数列。
解析:因为
所以
所以,数列 是等比数列。
六、阶差法
例7.已知数列 的前 项和 与 的关系是
,其中b是与n无关的常数,且 。
求出用n和b表示的an的关系式。
解析:首先由公式: 得:
利用阶差法要注意:递推公式中某一项的下标与其系数的指数的关系,即
其和为 。
七、待定系数法
例8:设数列 的各项是一个等差数列与一个等比数列对应项的和,若c1=2,c2=4,c3=7,c4=12,求通项公式cn
解:设
点评:用待定系数法解题时,常先假定通项公式或前n项和公式为某一多项式,一般地,若数列 为等差数列:则 , (b、c为常数),若数列 为等比数列,则 , 。
八、 辅助数列法
有些数列本身并不是等差或等比数列,但可以经过适当的变形,构造出一个新的数列为等差或等比数列,从而利用这个数列求其通项公式。
例9.在数列 中, , , ,求 。
解析:在 两边减去 ,得
∴ 是以 为首项,以 为公比的等比数列,
∴ ,由累加法得
=
= … = =
=
例10.(2003年全国高考题)设 为常数,且 ( ),
证明:对任意n≥1,
证明:设,
用 代入可得
∴ 是公比为 ,首项为 的等比数列,
∴ ( ),
即:
型如an+1=pan+f(n) (p为常数且p≠0, p≠1)可用转化为等比数列等.
(1)f(n)= q (q为常数),可转化为an+1+k=p(an+k),得{ an+k }是以a1+k为首项,p为公比的等比数列。
例11:已知数 的递推关系为 ,且 求通项 。
解:∵ ∴
令
则辅助数列 是公比为2的等比数列
∴ 即 ∴
例12: 已知数列{ }中 且 ( ),,求数列的通项公式。
解:∵
∴ , 设 ,则
故{ }是以 为首项,1为公差的等差数列
∴ ∴
例13.(07全国卷Ⅱ理21)设数列 的首项 .
(1)求 的通项公式;
解:(1)由
整理得 .
又 ,所以 是首项为 ,公比为 的等比数列,得
注:一般地,对递推关系式an+1=pan+q (p、q为常数且,p≠0,p≠1)可等价地改写成
则{ }成等比数列,实际上,这里的 是特征方程x=px+q的根。
(2) f(n)为等比数列,如f(n)= qn (q为常数) ,两边同除以qn,得 ,令bn= ,可转化为bn+1=pbn+q的形式。
例14.已知数列{an}中,a1= , an+1= an+( )n+1,求an的通项公式。
解:an+1= an+( )n+1 乘以2n+1 得 2n+1an+1= (2nan)+1 令bn=2nan 则 bn+1= bn+1
易得 bn= 即 2nan=
∴ an=
(3) f(n)为等差数列
例15.已知已知数列{an}中,a1=1,an+1+an=3+2 n,求an的通项公式。
解:∵ an+1+an=3+2 n,an+2+an+1=3+2(n+1),两式相减得an+2-an=2
因此得,a2n+1=1+2(n-1), a2n=4+2(n-1), ∴ an= 。
注:一般地,这类数列是递推数列的重点与难点内容,要理解掌握。
(4) f(n)为非等差数列,非等比数列
例16.(07天津卷理)在数列 中, ,其中 .
(Ⅰ)求数列 的通项公式;
解:由 , ,
可得 ,
所以 为等差数列,其公差为1,首项为0,故 ,所以数列 的通项公式为 .
这种方法类似于换元法, 主要用于已知递推关系式求通项公式。
九、归纳、猜想
如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。
例17.(2002年北京春季高考)已知点的序列 ,其中 , , 是线段 的中点, 是线段 的中点,…, 是线段 的中点,…
(1) 写出 与 之间的关系式( )。
(2) 设 ,计算 ,由此推测 的通项公式,并加以证明。
(3) 略
解析:(1)∵ 是线段 的中点, ∴
(2) ,
= ,
= ,
猜想 ,下面用数学归纳法证明
当n=1时, 显然成立;
假设n=k时命题成立,即
则n=k+1时, =
=
∴ 当n=k+1时命题也成立,∴ 命题对任意 都成立。
例18:在数列{ }中, ,则 的表达式为 。
分析:因为 ,所以得: ,
猜想: 。
十、倒数法
数列有形如 的关系,可在等式两边同乘以 先求出
例19.设数列 满足 求
解:原条件变形为 两边同乘以 得 .
∵
∴
综而言之,等差、等比数列是两类最基本的数列,是数列部分的重点,自然也是高考考查的热点,而考查的目的在于测试灵活运用知识的能力,这个“灵活”往往集中在“转化”的水平上;以上介绍的仅是常见可求通项基本方法,同学们应该在学习不断的探索才能灵活的应用.只要大家认真的分析求通项公式并不困难.
2022高考数学大题题型总结_数学大题题型
数列在整个高中数学中处于知识和方法的汇合点,在这个单元中显性知识包括三个概念、两种公式和一种关系(an和Sn的关系),隐性方面包括五种基本方法(观察归纳、类比联想、倒序相加、错位相减、裂项求和)和五种重要的数学思想(函数思想、方程思想、分类讨论的思想、转化的思想和数形结合的思想).纵观教材,概念和公式是核心,思维是支柱,运算是主体,应用是归宿,等差、等比数列的概念和性质及公式的应用成为复习的重点.
数列这个单元的复习应注意三个方面:①重视函数与数列的联系及方程思想在数列中的应用;②重视等差数列、等比数列的基础以及可化为等差、等比数列的简单问题,同时应重视等差、等比数列性质的灵活运用;③设计一些新颖题目,尤其是探索性问题,挖掘学生的潜能,培养学生的创新意识和创新精神.由于数列综合题涉及的问题背景材料新颖,解法灵活多样,建议在复习这部分内容时,启发学生多角度思考问题,培养学生思维的广阔性,养成良好的思维品质.
高考大纲对数列要求
近几年高考数学考试大纲没有变化,特别是 04、05、06要求都是一样的,对于《数列》一章的考试内容及考试要求为:(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项; (2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题; (3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题.”
高中数学数列部分真的好难,谁知道有什么比较好的复习方法吗?或者说对于文科生而言,数列在高考中应该重...
普通高中学校招生全国统一考试,是为普通高等学校招生设置的全国性统一考试,一般是每年6月7日-8日考试。 参加考试的对象一般是全日制普通高中 毕业 生和具有同等学历的中华人民共和国公民,下面是我整理的关于2022高考数学大题题型 总结 ,欢迎阅读!
2022高考数学大题题型总结
一、三角函数或数列
数列是高考必考的内容之一。高考对这个知识点的考查非常全面。每年都会有等差数列,等比数列的考题,而且经常以综合题出现,也就是说把数列知识和指数函数、对数函数和不等式等其他知识点综合起来。
近几年来,关于数列方面的考题题主要包含以下几个方面:
(1)数列基本知识考查,主要包括基本的等差数列和等比数列概念以及通项公式和求和公式。
(2)把数列知识和其他知识点相结合,主要包括数列知识和函数、方程、不等式、三角、几何等其他知识相结合。
(3)应用题中的数列问题,一般是以增长率问题出现。
二、立体几何
高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
三、统计与概率
1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5.了解随机事件的发生存在着规律性和随机事件概率的意义。
6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8.会计算事件在n次独立重复试验中恰好发生k次的概率.
四、解析几何(圆锥曲线)
高考解析几何剖析:
1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;
2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。
有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:
(1)、几何问题代数化。
(2)、用代数规则对代数化后的问题进行处理。
五、函数与导数
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:
1.导数的常规问题:
(1)刻画函数(比初等 方法 精确细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
高考数学题型特点和答题技巧
1.选择题——“不择手段”
题型特点:
(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。
(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容,在高考的数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴含了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。
(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力。思辨性的要求充满题目的字里行间。
(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。这个特色在高中数学中已经得到充分的显露。因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。
(5)解法多样化:以其他学科比较,“一题多解”的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。
解题策略:
(1)注意审题。把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。
(2)答题顺序不一定按题号进行。可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的激情和欲望,再解答陌生或不太熟悉的题目。若有时间,再去拼那些把握不大或无从下手的题。这样也许能超水平发挥。
(3)数学选择题大约有70%的题目都是直接法,要注意对符号、概念、公式、定理及性质等的理解和使用,例如函数的性质、数列的性质就是常见题目。
(4)挖掘隐含条件,注意易错易混点,例如集合中的空集、函数的定义域、应用性问题的限制条件等。
(5)方法多样,不择手段。高考试题凸现能力,小题要小做,注意巧解,善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。不要在一两个小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”也有25%的胜率。
(6)控制时间。一般不要超过40分钟,最好是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。
2.填空题——“直扑结果”
题型特点:
填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等,不过填空题和选择题也有质的区别。首先,表现为填空题没有备选项,因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足。对考生独立思考和求解,在能力要求上会高一些。长期以来,填空题的答对率一直低于选择题的答对率,也许这就是一个重要的原因。其次,填空题的解构,往往是在一个正确的命题或断言中,抽去其中的一些内容(即可以使条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活,在对题目的阅读理解上,较之选择题有时会显得较为费劲。当然并非常常如此,这将取决于命题者对试题的设计意图。
填空题的考点少,目标集中。否则,试题的区分度差,其考试的信度和效度都难以得到保证。这是因为:填空题要是考点多,解答过程长,影响结论的因素多,那么对于答错的考生便难以知道其出错的真正原因,有的可能是一窍不通,入手就错了;有的可能只是到了最后一步才出错,但他们在答卷上表现出来的情况一样,得相同的成绩,尽管他们的水平存在很大的差异。
解题策略:
由于填空题和选择题有相似之处,所以有些解题策略是可以共用的,在此不再多讲,只针对不同的特征给几条建议:
一是填空题绝大多数是计算型(尤其是推理计算型)和概念(或性质)判断性的试题,应答时必须按规则进行切实的计算或合乎逻辑的推演和判断;
二是作答的结果必须是数值准确,形式规范,例如集合形式的表示、函数表达式的完整等,结果稍有毛病便是零分;
三是《考试说明》中对解答填空题提出的要求是“正确、合理、迅速”,因此,解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。
3.解答题——“步步为营”
题型特点:
解答题与填空题比较,同居提供型的试题,但也有本质的区别。
首先,解答题应答时,考生不仅要提供出最后的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明,填空题则无此要求,只要填写结果,省略过程,而且所填结果应力求简练、概括的准确;
其次,试题内涵解答题比起填空题要丰富得多,解答题的考点相对较多,综合性强,难度较高,解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情况判定分数,用以反映其差别,因而解答题命题的自由度较之填空题大得多。
评分办法:
数学高考阅卷评分实行懂多少知识给多少分的评分办法,叫做“分段评分”。而考生“分段得分”的基本策略是:会做的题目力求不失分,部分理解的题目力争多得分。会做的题目若不注意准确表达和规范书写,常常会被“分段扣分”,有阅卷 经验 的老师告诉我们,解答立体几何题时,用向量方法处理的往往扣分少。
解答题阅卷的评分原则一般是:第一问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。
解题策略:
(1)常见失分因素:
①对题意缺乏正确的理解,应做到慢审题快做题;
②公式记忆不牢,考前一定要熟悉公式、定理、性质等;
③思维不严谨,不要忽视易错点;
④解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;
⑤计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;
⑥轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。
(2)何为“分段得分”:
对于同一道题目,有的人理解的深,有的人理解的浅;有的人解决的多,有的人解决的少。为了区分这种情况,高考的阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“分段评分”,或者“踩点给分”——踩上知识点就得分,踩得多就多得分。与之对应的“分段得分”的基本精神是,会做的题目力求不失分,部分理解的题目力争多得分。
对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。
有的考生拿到题目,明明会做,但最终答案却是错的———会而不对。
有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤———对而不全。
因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣分”。经验表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。
对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。
①缺步解答:如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”。
②跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。
如果不能,说明这个途径不对,立即改变方向;
如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。
由于考试时间的限制,“卡壳处”的攻克如果来不及了,就可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作“已知”,先做第二问,这也是跳步解答。
③退步解答:“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。
④辅助解答:一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举。
如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率。试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错,在确信万无一失后方可交卷。
(3)能力不同,要求有变:
由于考生的层次不同,面对同一张数学卷,要尽可能发挥自己的水平,考试策略也有所不同。
针对基础较差、以二类本科为最高目标的考生而言要“以稳取胜”——这类考生除了知识方面的缺陷外,“会而不对,对而不全”是这类考生的致命伤。丢分的主要原因在于审题失误和计算失误。考试时要克服急躁心态,如果发现做不下去,就尽早放弃,把时间用于检查已做的题,或回头再做前面没做的题。记住,只要把你会做的题都做对,你就是最成功的人!
针对二本及部分一本的同学而言要“以准取胜”——他们基础比较扎实,但也会犯低级错误,所以,考试时要做到准确无误(指会做的题目),除了最后两题的第三问不一定能做出,其他题目大都在“火力范围”内。但前面可能遇到“拦路虎”,要敢于放弃,把会做的题做得准确无误,再回来“打虎”。
针对第一志愿为名牌大学的考试而言要“以新取胜”——这些考生的主攻方向是能力型试题,在快速、正确做好常规试题的前提下,集中精力做好能力题。这些试题往往思考强度大,运算要求高,解题需要新的思想和方法,要灵活把握,见机行事。如果遇到不顺手的试题,也不必恐慌,可能是试题较难,大家都一样,此时,使会做的题不丢分就是上策。
高中数学答题技巧
(1)填写好全部考生信息,检查试卷有无问题;
(2)调节情绪,尽快进入考试状态,可解答那些一眼就能看得出结论的简单选择或填空题(一旦解出,信心倍增,情绪立即稳定);
(3)对于不能立即作答的题目,可一边通览,一边粗略地分为A、B两类:A类指题型比较熟悉、容易上手的题目;B类指题型比较陌生、自我感觉有困难的题目,做到心中有数。
2022高考数学大题题型总结_数学大题题型相关 文章 :
★ 高考数学答题技巧方法及易错知识点
★ 做好高考数学题的方法技巧有哪些
★ 2022高三数学学习方法总结
★ 2022年高考数学前十天如何复习最有效
★ 高三数学二轮复习策略2022
★ 高考数学知识点最新归纳
★ 2022高三数学知识点整理
★ 2022年高三数学第二轮复习方法
★ 2022年高考复习技巧及方法(最新)
★ 高三数学知识点总结框架
高考数学,数列,证明题,能在一下午学透彻么。
数列嘛,你想简单一点就是找规律,从最基础的等差数列、等比数列到递推数列,你都是为了找出前后项之间的关系而已
所以,你要牢记所有基本的数列公式,做题时用列举法、递推法找出规律也就是通项,做多就熟了
很难。因为这两个类型的题目题型太多了,你能做的最好是把你以前做的题目认真仔细看一遍,总结些经验,技巧,另外这两天最好每天浓度做些题目,以防手生!最后,祝你好运,希望考的题目类型都是你擅长做的!