您现在的位置是: 首页 > 教育政策 教育政策
高考数学函数例题_高考数学函数专题理科
tamoadmin 2024-05-29 人已围观
简介1.三角函数数学题,明天高考,在线等!2.一道高中数学函数题 快高考了谢谢大家~3.2006上海高考数学试题答案理科第一小题:前半部分拆开,后半部分用倍角公式降幂(即化为一次幂的cos2x,)然后去做,最大值和最小正周期都很容易求得。注:这种涉及到三角函数的大题一般都是想办法去降幂,降幂多用倍角公式,然后整理出来最后一步用公式:asinx+bcosx=根号下a^2+b^2去乘上sin(x+u),t
1.三角函数数学题,明天高考,在线等!
2.一道高中数学函数题 快高考了谢谢大家~
3.2006上海高考数学试题答案理科
第一小题:前半部分拆开,后半部分用倍角公式降幂(即化为一次幂的cos2x,)然后去做,最大值和最小正周期都很容易求得。注:这种涉及到三角函数的大题一般都是想办法去降幂,降幂多用倍角公式,然后整理出来最后一步用公式:asinx+bcosx=根号下a^2+b^2去乘上sin(x+u),tan(u)=a/b
第一小题出来之后第二小题也会比较容易做,用sinA=sin(B+C)=sinBcosC+cosBsinC
总结:此类三角函数的大题 ,关键在于第一步的降幂,降幂完成后下面的问题都会很容易解决。
三角函数数学题,明天高考,在线等!
说下思路.
恒成立问题中有参数思想先是分离参数啊.
看这个题先把g(x)中的前面那个2代进真数中去.
得g(x)=loga(2x+t-2)^2 根据对数函数的单调性可直接比较真数的大小.
数学符号打出来好复杂....
因为0<a<1所以是减函数.
直接比较真数.分离出t确定范围就可以了.
一道高中数学函数题 快高考了谢谢大家~
1.tan(A+B)/2=tan(180-C)/2=tan(90-C/2)=cot(c/2)=cos(C/2)/sin(C/2)
2sinC=4sin(C/2)cos(C/2)
cos(C/2)不为0,故sin(C/2)^2=1/4,sin(C/2)=1/2
又C/2<90,C=60
2.正弦定理:AB/sinC=BC/sinA=AC/sinB=周长/(sinA+sinB+sinC)=2/根3
又sinA+sinB+sinC=sinA+sin(120-A)+根3/2=3/2sinA+根3/2cosA+根3/2=根3cos(A-60)+根3/2 *
其中0<A<120,所以1/2<cos(A-60)<=1,
所以2<周长<= 3
别想太多了,祝高考顺利啊!
2006上海高考数学试题答案理科
令x=tant,则y(t)=m*sint*2+4*3^1/2*sint+n*cos^2,用二倍角公式化简,y(t)=2*3^1/2sin2t+(n-m)/2*cos2t+(n+m)/2=(12+((n-m)/2)^2)^1/2*sin(2t+a)+(n+m)/2,y(t)max=(12+((n-m)/2)^2)^1/2+(n+m)/2=7,y(t)min=—(12+((n-m)/2)^2)*1/2+(n+m)/2=—1,m=1,n=5或m=5,n=1。
上海数学(理工农医类)参考答案
一、(第1题至笫12题)
1. 1 2. 3. 4. 5. -1+i 6. 7.
8. 5 9. 10. 36 11. k=0,-1<b<1 12. a≤10
二、(第13题至笫16题)
13. C 14. A 15. A 16. D
三、(第17题至笫22题)
17.解:y=cos(x+ ) cos(x- )+ sin2x
=cos2x+ sin2x=2sin(2x+ )
∴函数y=cos(x+ ) cos(x- )+ sin2x的值域是[-2,2],最小正周期是π.
18.解:连接BC,由余弦定理得BC2=202+102-2×20×10COS120°=700.
于是,BC=10 .
∵ , ∴sin∠ACB= ,
∵∠ACB<90° ∴∠ACB=41°
∴乙船应朝北偏东71°方向沿直线前往B处救援.
19.解:(1) 在四棱锥P-ABCD中,由PO⊥平面ABCD,得
∠PBO是PB与平面ABCD所成的角, ∠PBO=60°.
在Rt△AOB中BO=ABsin30°=1, 由PO⊥BO,
于是,PO=BOtg60°= ,而底面菱形的面积为2 .
∴四棱锥P-ABCD的体积V= ×2 × =2.
(2)解法一:以O为坐标原点,射线OB、OC、OP分别为x轴、y轴、z轴的正半轴建立空间直角坐标系.
在Rt△AOB中OA= ,于是,点A、B、D、P的坐标分别是A(0,- ,0),
B(1,0,0),D(-1,0,0)P(0,0, ).
E是PB的中点,则E( ,0, ) 于是 =( ,0, ), =(0, , ).
设 的夹角为θ,有cosθ= ,θ=arccos ,
∴异面直线DE与PA所成角的大小是arccos .
解法二:取AB的中点F,连接EF、DF.
由E是PB的中点,得EF‖PA,
∴∠FED是异面直线DE与PA所成角(或它的补角).
在Rt△AOB中AO=ABcos30°= =OP,
于是, 在等腰Rt△POA中,PA= ,则EF= .
在正△ABD和正△PBD中,DE=DF= .
cos∠FED= =
∴异面直线DE与PA所成角的大小是arccos .
20.证明:(1)设过点T(3,0)的直线l交抛物线y2=2x于点A(x1,y1)、B(x12,y2).
当直线l的钭率下存在时,直线l的方程为x=3,此时,直线l与抛物线相交于点A(3, )、B(3,- ).∴ =3
当直线l的钭率存在时,设直线l的方程为y=k(x-3),其中k≠0.
当 y2=2x
得ky2-2y-6k=0,则y1y2=-6.
y=k(x-3)
又∵x1= y , x2= y ,
∴ =x1x2+y1y2= =3.
综上所述, 命题“如果直线l过点T(3,0),那么 =3”是真命题.
(2)逆命题是:设直线l交抛物线y2=2x于A、B两点,如果 =3,那么该直线过点T(3,0).该命题是假命题.
例如:取抛物线上的点A(2,2),B( ,1),此时 =3,
直线AB的方程为Y= (X+1),而T(3,0)不在直线AB上.
说明:由抛物线y2=2x上的点A(x1,y1)、B(x12,y2)满足 =3,可得y1y2=-6.
或y1y2=2,如果y1y2=-6.,可证得直线AB过点(3,0);如果y1y2=2, 可证得直线AB过点(-1,0),而不过点(3,0).
21.证明(1)当n=1时,a2=2a,则 =a;
2≤n≤2k-1时, an+1=(a-1) Sn+2, an=(a-1) Sn-1+2,
an+1-an=(a-1) an, ∴ =a, ∴数列{an}是等比数列.
解(2)由(1)得an=2a , ∴a1a2…an=2 a =2 a =a ,
bn= (n=1,2,…,2k).
(3)设bn≤ ,解得n≤k+ ,又n是正整数,于是当n≤k时, bn< ;
当n≥k+1时, bn> .
原式=( -b1)+( -b2)+…+( -bk)+(bk+1- )+…+(b2k- )
=(bk+1+…+b2k)-(b1+…+bk)
= = .
当 ≤4,得k2-8k+4≤0, 4-2 ≤k≤4+2 ,又k≥2,
∴当k=2,3,4,5,6,7时,原不等式成立.
22.解(1) 函数y=x+ (x>0)的最小值是2 ,则2 =6, ∴b=log29.
(2)设0<x1<x2,y2-y1= .
当 <x1<x2时, y2>y1, 函数y= 在[ ,+∞)上是增函数;
当0<x1<x2< 时y2<y1, 函数y= 在(0, ]上是减函数.
又y= 是偶函数,于是,该函数在(-∞,- ]上是减函数, 在[- ,0)上是增函数.
(3)可以把函数推广为y= (常数a>0),其中n是正整数.
当n是奇数时,函数y= 在(0, ]上是减函数,在[ ,+∞) 上是增函数,
在(-∞,- ]上是增函数, 在[- ,0)上是减函数.
当n是偶数时,函数y= 在(0, ]上是减函数,在[ ,+∞) 上是增函数,
在(-∞,- ]上是减函数, 在[- ,0)上是增函数.
F(x)= +
=
因此F(x) 在 [ ,1]上是减函数,在[1,2]上是增函数.
所以,当x= 或x=2时, F(x)取得最大值( )n+( )n;
当x=1时F(x)取得最小值2n+1.
图画不到。